A New “Mathematical” Definition Proposed for What Constitutes a Planet

Three exoplanet candidates found by the Planet Hunters citizen science project. Credit: Zooniverse

In the current (heated) debate of what constitutes a planet, it seems everyone can agree at least one thing: The current definition put forth by the International Astronomical Union is actually quite vague and it really only applies to our own Solar System. So while the definition is unclear at best in our own neighborhood, it also doesn’t provide a framework for classifying the thousands of exo-worlds that are being discovered on almost a weekly basis.

Since math has been dubbed “the language of the Universe” it seems rather fitting and logical to use arithmetic to help in framing a better definition for planethood.

This week, UCLA professor Jean-Luc Margot has proposed a simple mathematical test that can be used to separate planets from other bodies like dwarf planets and minor planets. He says his new system is easy.

“One should not need a teleportation device to decide whether a newly discovered object is a planet,” Margot said.

The new approach would use estimates of the star’s mass and the planet’s mass and orbital period. Since the IAU’s definition is based primarily on the ability of a planet to “clear its orbit,” (whether it can accumulate or dominate small bodies in its orbital neighborhood), Margot’s test narrows this down to a specific timeframe of determining whether a body can clear a specific region around its orbit.

“A simple metric can be used to determine whether a planet or exoplanet can clear its orbital zone during a characteristic time scale, such as the lifetime of the host star on the main sequence,” Margot writes in his paper. “This criterion requires only estimates of star mass, planet mass, and orbital period, making it possible to immediately classify 99% of all known exoplanets.”

Under these criteria, all 8 planets and all classifiable exoplanets would be classified as planets. It also keeps the distinction between planets and dwarf planets. Some have pointed out that Margot’s criteria would make our Moon a planet. But, as Margot told Universe Today, that’s not necessarily so. “It really depends on how the IAU decides to define satellites and if or how they decide to define double planets,” he said.

Margot says his definition would be useful in generalizing and simplifying the definition of a planet, and that the information for applying this for exoplanets is easily obtained with Earth- or space-based telescopes.

“The disparity between planets and non-planets is striking,” Margot said. “The sharp distinction suggests that there is a fundamental difference in how these bodies formed, and the mere act of classifying them reveals something profound about nature.”

Margot also found that bodies that can clear their orbits — and therefore qualify as planets — are typically spherical.

“Because a quantitative orbit-clearing criterion can be applied to all planets and exoplanets,” Margot writes, “it is possible to extend the 2006 IAU planet definition to stars other than the Sun and to remove any possible ambiguity about what it means to clear an orbital zone.”

Margot presented his proposal at the annual meeting of the AAS’s Division for Planetary Sciences. It is not known whether the new approach will be considered by the IAU.

Further reading: Margot’s paper, UCLA press release

Oldest Spiral Galaxy in the Universe Discovered

An artist’s rendering of galaxy BX442 and its companion dwarf galaxy (upper left)

Caption: An artist’s rendering of galaxy BX442 and its companion dwarf galaxy (upper left). Credit: Dunlap Institute for Astronomy & Astrophysics/Joe Bergeron

Ancient starlight traveling for 10.7 billion years has brought a surprise – evidence of a spiral galaxy long before other spiral galaxies are known to have formed.

“As you go back in time to the early universe, galaxies look really strange, clumpy and irregular, not symmetric,” said Alice Shapley, a UCLA associate professor of physics and astronomy, and co-author of a study reported in today’s journal Nature. “The vast majority of old galaxies look like train wrecks. Our first thought was, why is this one so different, and so beautiful?”

Galaxies today come in a variety of unique shapes and sizes. Some, like our Milky Way Galaxy, are rotating disks of stars and gas called spiral galaxies. Other galaxies, called elliptical galaxies, resemble giant orbs of older reddish stars moving in random directions. Then there are a host of smaller irregular shaped galaxies bound together by gravity but lacking in any visible structure. A great, diverse population of these types of irregular galaxies dominated the early Universe, says Shapely.

Light from this incredibly distant spiral galaxy, traveling at nearly six trillion miles per year, took 10.7 billion years to reach Earth; just 3 billion years after the Universe was created in an event called the Big Bang.

According to a press release from UCLA, astronomers used the sharp eyes of the Hubble Space Telescope to spy on 300 very distant galaxies in the early Universe. The scientists originally thought their galaxy, one of the most massive in their survey going by the unglamorous name of BX442, was an illusion, perhaps two galaxies superimposed on each other.

“The fact that this galaxy exists is astounding,” said David Law, lead author of the study and Dunlap Institute postdoctoral fellow at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics. “Current wisdom holds that such ‘grand-design’ spiral galaxies simply didn’t exist at such an early time in the history of the universe.” A ‘grand design’ galaxy has prominent, well-formed spiral arms.

To understand their image further, astronomers used a unique, state-of-the-art instrument called the OSIRIS spectrograph at the W.M. Keck Observatory atop Hawaii’s dormant Mauna Kea volcano. The instrument, built by UCLA professor James Larkin, allowed them to study light from about 3,600 locations in and around BX442. This spectra gave them the clues they needed to show they were indeed looking at a single, rotating spiral galaxy.

While spiral galaxies are abundant throughout the current cosmos, that wasn’t always the case. Spiral galaxies in the early Universe were rare because of frequent interactions. “BX442 looks like a nearby galaxy, but in the early universe, galaxies were colliding together much more frequently,” says Shapely. “Gas was raining in from the intergalactic medium and feeding stars that were being formed at a much more rapid rate than they are today; black holes grew at a much more rapid rate as well. The universe today is boring compared to this early time.”

Shapely and Law think the gravitational tug-of-war between a dwarf galaxy companion and BX442 may be responsible for its futuristic look. The companion appears as just a small blob in their image. Computer simulations conducted by Charlotte Christensen, a postdoctoral student at the University of Arizona and co-author of the paper, lends evidence to this idea. Eventually, BX442 and the smaller galaxy likely will merge.

Shapley said BX442 represents a link between early galaxies that are much more turbulent and the rotating spiral galaxies that we see around us. “Indeed, this galaxy may highlight the importance of merger interactions at any cosmic epoch in creating grand design spiral structure,” she said.

Studying BX442 is likely to help astronomers understand how spiral galaxies like the Milky Way form, she added.

Caption 2: HST/Keck false color composite image of galaxy BX442. Credit: David Law/Dunlap Institute for Astronomy & Astrophysics

The Case of the Disappearing Dust

Astronomy has always taught us that planets form from vast clouds of dust and gas orbiting young stars. It’s a gradual process of accretion that takes hundreds of thousands, perhaps even millions, of years… or does it?

During a 1983 sky survey with the Infrared Astronomical Satellite (IRAS) astronomers identified a young Sun-like star with a large cloud of dust surrounding it. The star, named TYC 8241 2652 1, is 450 light years away and what they had found around it was thought to be the beginnings of a solar system – the protoplanetary disc from which planets form.

Fast forward to 2008. Astronomers observed at the same star with a different infrared telescope, the Gemini South Observatory in Chile. What was observed looked a lot like what was previously seen in ’83.

Then, in 2009, they looked again. Curiously, the brightness of the dust cloud was only a third of what it was the year before. And in WISE observations made the very next year, it had disappeared entirely.

“It’s like the classic magician’s trick: now you see it, now you don’t. Only in this case we’re talking about enough dust to fill an inner solar system, and it really is gone.”

– Carl Melis, lead author and postdoctoral fellow at UC San Diego

Abracadabra?

“It’s as if you took a conventional picture of the planet Saturn today and then came back two years later and found that its rings had disappeared,” said study co-author and circumstellar disk expert Ben Zuckerman of UCLA.

It’s always been thought that planets take some time to form, in the order of hundreds of thousands of years. Although that may seem like forever to humans, it’s quick in cosmic time scales. But if what they’ve seen here with TYC 8241 is in fact planetary formation, well… it may happen a lot faster than anyone thought.

On the other hand, the star could have somehow blown all the dust out of the system. More research will be needed to see if that was the case.

The really interesting thing here is that astronomers have traditionally looked for these kinds of dust clouds around stars to spot planetary formation in action. But if planets form quicker than we thought, and the dust clouds are only fleeting features, then there may be a lot more solar systems out there that we can’t directly observe.

“People often calculate the percentage of stars that have a large amount of dust to get a reasonable estimate of the percentage of stars with planetary systems, but if the dust avalanche model is correct, we cannot do that anymore,” said study co-author Inseok Song, assistant professor of physics and astronomy at the University of Georgia. “Many stars without any detectable dust may have mature planetary systems that are simply undetectable.”

Read more in the news release from the University of Georgia.

Top image: Gemini Observatory/AURA artwork by Lynette Cook.