New Scripps Research Ship Will Honor Astronaut Sally Ride

Dr. Sally Ride, the first American woman to fly in space

Dr. Sally K. Ride, physicist, NASA astronaut, and first American woman to fly in space, will be honored with a U.S. Navy research vessel bearing her name, which will be operated by and homeported at San Diego’s Scripps Institution of Oceanography.

“Dr. Sally Ride inspired millions of people, especially young women and girls, to reach for the stars,” said U.S. Sen. Barbara Boxer, D-Calif. “Naming the Navy’s new ocean research vessel in her honor is a fitting tribute to her legacy of innovation and discovery.”

Dr. Ride died at her home in La Jolla on July 23, 2012, after a 17-month battle with pancreatic cancer. She was 61.

Sally Ride was a NASA astronaut for 11 years before joining the UCSD faculty as a physics professor.
Sally Ride was a NASA astronaut for 11 years before joining the UCSD faculty as a physics professor and director of the California Space Institute.

Dr. Ride was selected for NASA’s astronaut corps in 1978 and became the first American woman in space aboard Space Shuttle Challenger in 1983. In 1989, she joined the faculty of UC San Diego as professor of physics and was director of the university’s California Space Institute.

“We are touched by the extraordinary honor that this ship is being named for Sally Ride, who, after serving our nation as a pioneering and accomplished astronaut, served on the faculty of UC San Diego for nearly two decades,” said UC San Diego Chancellor Pradeep K. Khosla in a Scripps press release. “Her commitment to teaching and inspiring young minds is legendary and we take tremendous pride in this prestigious and well-deserved honor for her legacy and for UC San Diego.”

According to Gary Robbins in an article for the San Diego Union-Tribune “It is common for a research vessel to be named after an explorer or scientist. Scripps’ current fleet of Navy-owned ships includes the Roger Revelle, which bears the name of the late UC San Diego scientist who helped pioneer the study of global warming. The Woods Hole Oceanographic Institution in Cape Cod, Mass. is getting a ship named R/V Neil Armstrong.”

Rendering of the R/V Sally Ride
Rendering of the R/V Sally Ride

Designed to operate globally, R/V Sally Ride will continue the Scripps legacy of conducting pioneering ocean exploration and research critical to our understanding of our planet, our oceans, and our atmosphere. As a shared-use, general-purpose ship, R/V Sally Ride will engage in a broad spectrum of research in physics, chemistry, biology, geology, and climate science, including research missions with relevance to the Navy.

As a seagoing laboratory supporting research and education, the new ship will feature modern research instrumentation to fuel scientific exploration, including mapping systems, sensors, and profilers that will investigate features from the seafloor to the atmosphere.

“I can’t think of a more perfect name for the Navy’s new research vessel. Dr. Ride was a trailblazer in every sense of the word in the fields of science and engineering. Dr. Ride’s namesake ship and its crew will continue her legacy of courage, determination, and spirit of discovery.”

– U.S. Rep. Susan Davis, D-Calif.

R/V Sally Ride is currently under construction at Dakota Creek Industries Inc. in Anacortes, Washington, and is scheduled for launch in 2015.

Read more on the Scripps news site here, and watch a video on the naming of the vessel below:

Source: Scripps News

Isotopic Evidence of the Moon’s Violent Origins

Artist’s impression of an impact of two planet-sized worlds (NASA/JPL-Caltech)

Scientists have uncovered a history of violence hidden within lunar rocks, further evidence that our large, lovely Moon was born of a cataclysmic collision between worlds billions of years ago.

Using samples gathered during several Apollo missions as well as a lunar meteorite that had fallen to Earth (and using Martian meteorites as comparisons) researchers have observed a marked depletion in lunar rocks of lighter isotopes, including those of zinc — a telltale element that can be “a powerful tracer of the volatile histories of planets.”

The research utilized an advanced mass spectroscopy instrument to measure the ratios of specific isotopes present in the lunar samples. The spectrometer’s high level of precision allows for data not possible even five years ago.

Scientists have been looking for this kind of sorting by mass, called isotopic fractionation, since the Apollo missions first brought Moon rocks to Earth in the 1970s, and Frédéric Moynier, PhD, assistant professor of Earth and Planetary Sciences at Washington University in St. Louis — together with PhD student, Randal Paniello, and colleague James Day of the Scripps Institution of Oceanography — are the first to find it.

The team’s findings support a now-widely-accepted hypothesis — called the Giant Impact Theory, first suggested by PSI scientists William K. Hartmann and Donald Davis in 1975 — that the Moon was created from a collision between early Earth and a Mars-sized protoplanet about 4.5 billion years ago. The effects of the impact eventually formed the Moon and changed the evolution of our planet forever — possibly even proving crucial to the development of life on Earth.

(What would a catastrophic event like that have looked like? Probably something like this:)

Read more: What’s the Moon Made Of? Earth, Most Likely.

“This is compelling evidence of extreme volatile depletion of the moon,” said Scripps researcher James Day, a member of the team. “How do you remove all of the volatiles from a planet, or in this case a planetary body? You require some kind of wholesale melting event of the moon to provide the heat necessary to evaporate the zinc.”

In the team’s paper, published in the October 18 issue of Nature, the researchers suggest that the only way for such lunar volatiles to be absent on such a large scale would be evaporation resulting from a massive impact event.

“When a rock is melted and then evaporated, the light isotopes enter the vapor phase faster than the heavy isotopes, so you end up with a vapor enriched in the light isotopes and a solid residue enriched in the heavier isotopes. If you lose the vapor, the residue will be enriched in the heavy isotopes compared to the starting material,” explains Moynier.

The fact that similar isotopic fractionation has been found in lunar samples gathered from many different locations indicates a widespread global event, and not something limited to any specific regional effect.

The next step is finding out why Earth’s crust doesn’t show an absence of similar volatiles, an investigation that may lead to clues to where Earth’s surface water came from.

“Where did all the water on Earth come from?” asked Day. “This is a very important question because if we are looking for life on other planets we have to recognize that similar conditions are probably required. So understanding how planets obtain such conditions is critical for understanding how life ultimately occurs on a planet.”

“The work also has implications for the origin of the Earth,”  adds Moynier, “because the origin of the Moon was a big part of the origin of the Earth.”

Read more on the Washington University news release and at the UC San Diego news center.

Inset image: Cross-polarized transmitted-light image of a lunar rock. Photo by James Day, Scripps/UCSD

The Case of the Disappearing Dust

Astronomy has always taught us that planets form from vast clouds of dust and gas orbiting young stars. It’s a gradual process of accretion that takes hundreds of thousands, perhaps even millions, of years… or does it?

During a 1983 sky survey with the Infrared Astronomical Satellite (IRAS) astronomers identified a young Sun-like star with a large cloud of dust surrounding it. The star, named TYC 8241 2652 1, is 450 light years away and what they had found around it was thought to be the beginnings of a solar system – the protoplanetary disc from which planets form.

Fast forward to 2008. Astronomers observed at the same star with a different infrared telescope, the Gemini South Observatory in Chile. What was observed looked a lot like what was previously seen in ’83.

Then, in 2009, they looked again. Curiously, the brightness of the dust cloud was only a third of what it was the year before. And in WISE observations made the very next year, it had disappeared entirely.

“It’s like the classic magician’s trick: now you see it, now you don’t. Only in this case we’re talking about enough dust to fill an inner solar system, and it really is gone.”

– Carl Melis, lead author and postdoctoral fellow at UC San Diego

Abracadabra?

“It’s as if you took a conventional picture of the planet Saturn today and then came back two years later and found that its rings had disappeared,” said study co-author and circumstellar disk expert Ben Zuckerman of UCLA.

It’s always been thought that planets take some time to form, in the order of hundreds of thousands of years. Although that may seem like forever to humans, it’s quick in cosmic time scales. But if what they’ve seen here with TYC 8241 is in fact planetary formation, well… it may happen a lot faster than anyone thought.

On the other hand, the star could have somehow blown all the dust out of the system. More research will be needed to see if that was the case.

The really interesting thing here is that astronomers have traditionally looked for these kinds of dust clouds around stars to spot planetary formation in action. But if planets form quicker than we thought, and the dust clouds are only fleeting features, then there may be a lot more solar systems out there that we can’t directly observe.

“People often calculate the percentage of stars that have a large amount of dust to get a reasonable estimate of the percentage of stars with planetary systems, but if the dust avalanche model is correct, we cannot do that anymore,” said study co-author Inseok Song, assistant professor of physics and astronomy at the University of Georgia. “Many stars without any detectable dust may have mature planetary systems that are simply undetectable.”

Read more in the news release from the University of Georgia.

Top image: Gemini Observatory/AURA artwork by Lynette Cook.