You Can Vote to Name America’s New Rocket from ULA

Help ULA name America’s next rocket to space. Credit: ULA

Help ULA name America’s next rocket to space. Credit: ULA
Voting Details below
Watch ULA’s March 25 Delta Launch Live – details below
Update 3/26: 2 new names have been added to the voting list – Zeus and Vulcan !
[/caption]

United Launch Alliance (ULA) is asking the public for your help in naming their new American made rocket, now under development that “represents the future of space”- and will replace the firms current historic lines of Atlas and Delta rocket families that began launching back near the dawn of the space age.

Eagle, Freedom or GalaxyOne – those are the names to choose from for the next two weeks, from now until April 6.

UPDATE 3/26: 2 new names have been added to the voting list – Zeus and Vulcan !

ULA says the names were selected from a list of over 400 names submitted earlier this year by ULA’s 3400 employees and many space enthusiasts.

ULA has set up a simple voting system whereby you can vote for your favorite name via text or an online webpage.

Currently dubbed the “Next Generation Launch System,” or NGLS, ULA’s new president and CEO Tory Bruno is set to unveil the next generation rockets design and name at the National Space Symposium on April 13 in Colorado Springs, Colorado.

“ULA’s new rocket represents the future of space – innovative, affordable and reliable,” said Bruno, in a statement.

“More possibilities in space means more possibilities here on earth. This is such a critical time for space travel and exploration and we’re excited to bring all of America with us on this journey into the future.”

The NGLS is ULA’s response to what’s shaping up as a no holds barred competition with SpaceX for future launch contracts where only the innovative and those who dramatically cut the cost of access to space will survive.

The first flight of the NGLS is slated for 2019.

Here’s how you can cast your vote for America’s next rocket to April 6, 2015:

Visit the website: http://bit.ly/rocketvote

OR

Voters can text 22333 to submit a vote for their favorite name. The following key can be used to text a vote:

• ULA1 for “Eagle”
• ULA2 for “Freedom”
• ULA3 for “GalaxyOne”

3/26 Update: Zeus and Vulcan have been added to the voting list

One small step for ULA, one giant leap for space exploration. Vote to name America’s next ride to space: Eagle, Freedom, or GalaxyOne? #rocketvote http://bit.ly/rocketvote
One small step for ULA, one giant leap for space exploration. Vote to name America’s next ride to space: Eagle, Freedom, or GalaxyOne? #rocketvote http://bit.ly/rocketvote

“Name America’s next ride to space. Vote early, vote often … ” says Bruno.

I have already voted – early and often.

Over 11,000 votes were tallied in just the first day.

Currently ULA is the nation’s premier launch provider, launching at a rate of about once per month. 13 launches are planned for 2015- as outlined in my earlier article here.

But ULA faces stiff and relentless pricing and innovative competition from NewSpace upstart SpaceX, founded by billionaire Elon Musk.

NGLS is ULA’s answer to SpaceX – they must compete in order to survive.

To date ULA has accomplished a 100 percent mission success for 94 launches since the firms founding in 2006 as a joint venture between Boeing and Lockheed Martin. They have successfully launched numerous NASA, national security and commercial payloads into orbit and beyond.

Planetary missions launched for NASA include the Mars rovers and landers Phoenix and Curiosity, Pluto/New Horizons, Juno, GRAIL, LRO and LCROSS.

A United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Thursday, March 12, 2015, Florida.  Credit: Ken Kremer- kenkremer.com
ULA’s new rocket will launch from this pad in 2019
A United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Thursday, March 12, 2015, Florida. Credit: Ken Kremer- kenkremer.com

ULA’s most recent launch for NASA involved the $1.1 Billion Magnetospheric Multiscale (MMS) mission comprised of four formation flying satellites which blasted to Earth orbit atop an Atlas V rocket from Cape Canaveral Air Force Station, Florida, during a spectacular nighttime blastoff on March 12, 2015. Read my onsite reports – here and here.

“Space launch affects everyone, every day, and our goal in letting America name its next rocket is to help all Americans imagine the future of endless possibilities created by affordable space launch,” Bruno added.

NGLS will include some heritage design from the Atlas V and Delta IV rockets, but will feature many new systems and potentially some reusable systems – to be outlined by Bruno on April 13.

ULA plans to phase out the Delta IV around 2019 when the current contracts are concluded. The Atlas V will continue for a transitional period.

The Atlas V is also the launcher for Boeing’s CST-100 manned space taxi due to first launch in 2017.

NGLS will launch from Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida, the same pad as for the Atlas V, as well as from Vandenberg AFB, Calif.

ULA’s next Delta IV launch with GPS IIF-9 is scheduled shortly for Wednesday, March 25, with liftoff at 2:36 p.m. EDT from Cape Canaveral.

Live webcast begins at 2:06 p.m. Live link here – http://www.ulalaunch.com/webcast.aspx

Vote now!

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Tory Bruno, ULA President and CEO, speaks about the ULA launch of NASA’s Orion EFT-1 mission on Delta IV Heavy rocket in the background at the Delta IV launch complex 37 on Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer- kenkremer.com
Tory Bruno, ULA President and CEO, speaks about the ULA launch of NASA’s Orion EFT-1 mission on Delta IV Heavy rocket in the background at the Delta IV launch complex 37 on Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer- kenkremer.com

NASA’s MMS Satellite Constellation Blasts to Orbit to Study Explosive Magnetic Reconnection

A United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Thursday, March 12, 2015, Florida. Credit: Ken Kremer- kenkremer.com

KENNEDY SPACE CENTER, FL – NASA’s constellation of state-of-the-art magnetospheric science satellites successfully rocketed to orbit late Thursday night, March 12, during a spectacular nighttime launch on a mission to unravel the mysteries of the process known as magnetic reconnection.

The $1.1 Billion Magnetospheric Multiscale (MMS) mission is comprised of four formation flying satellites blasted to Earth orbit atop a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station, Florida, precisely on time at 10:44 p.m. EDT.

Magnetic reconnection is a little understood natural process whereby magnetic fields around Earth connect and disconnect while explosively releasing vast amounts of energy. It occurs throughout the universe.

NASA’s fleet of four MMS spacecraft will soon start the first mission devoted to studying the phenomenon called magnetic reconnection. Scientists believe that it is the catalyst for some of the most powerful explosions in our solar system.

The night launch of the venerable Atlas V booster turned night into day as the 195 foot tall rocket roared to life on the fiery fury of about a million and a half pounds of thrust, thrilling spectators all around the Florida space coast and far beyond.

A United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Thursday, March 12, 2015, Florida.  Credit: Ken Kremer- kenkremer.com
A United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Thursday, March 12, 2015, Florida. Credit: Ken Kremer- kenkremer.com

NASA’s four Magnetospheric Multiscale (MMS) spacecraft were stacked like pancakes on top of one another and encapsulated inside the rocket extended nose cone atop the Atlas V.

The venerable rocket continues to enjoy a 100% success rate. It launched in the Atlas V 421 configuration with a 4-meter diameter Extra Extended Payload Fairing along with two Aerojet Rocketdyne solid rocket motors attached to the Atlas booster first stage.

The two stage Atlas V delivered the MMS satellites to a highly elliptical orbit. They were then deployed from the rocket’s Centaur upper stage sequentially, in five-minute intervals beginning at 12:16 a.m. Friday, March 13. The last separation occurred at 12:31 a.m.

About 10 minutes later at 12:40 a.m., NASA scientists and engineers confirmed the health of all four spacecraft.

“I am speaking for the entire MMS team when I say we’re thrilled to see all four of our spacecraft have deployed and data indicates we have a healthy fleet,” said Craig Tooley, project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Artist's concept of the MMS observatory fleet with rainbow magnetic lines. Image Credit: NASA
Artist’s concept of the MMS observatory fleet with rainbow magnetic lines. Image Credit: NASA

This marked ULA’s 3rd launch in 2015, the 53nd Atlas V mission and the fourth Atlas V 421 launch in the programs life.

Each of the identically instrumented spacecraft are about four feet tall and eleven feet wide.

The deployment and activation of all four spacecraft is absolutely essential to the success of the mission, said Jim Burch, principal investigator of the MMS instrument suite science team at Southwest Research Institute (SwRI) in San Antonio, Texas.

They will fly in a pyramid formation to conduct their science mission, spaced about 10 miles apart. That separation distance will vary over time during the two year primary mission.

NASA scientists and engineers will begin deploying multiple booms and antennas on the spacecraft in a few days, MMS mission scientist Glyn Collinson of NASA Goddard told Universe Today.

The deployment and calibration process will last about six months, Collinson explained. Science observations are expected to begin in September 2015.

Technicians work on NASA’s 20-foot-tall Magnetospheric Multiscale (MMS) mated quartet of stacked observatories in the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
Technicians work on NASA’s 20-foot-tall Magnetospheric Multiscale (MMS) mated quartet of stacked observatories in the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

“After a decade of planning and engineering, the science team is ready to go to work,” said Burch.

“We’ve never had this type of opportunity to study this fundamental process in such detail.”

The spacecraft will fly in a tight formation through regions of reconnection activity.

The instruments will conduct their science observations at rates100 times faster than any previous mission.

“MMS is a crucial next step in advancing the science of magnetic reconnection – and no mission has ever observed this fundamental process with such detail,” said Jeff Newmark, interim director for NASA’s Heliophysics Division at the agency’s Headquarters in Washington.

“The depth and detail of our knowledge is going to grow by leaps and bounds, in ways that no one can yet predict.”

MMS measurements should lead to significant improvements in models for yielding better predictions of space weather and thereby the resulting impacts for life here on Earth as well as for humans aboard the ISS and robotic satellite explorers in orbit and the heavens beyond.

The best place to study magnetic reconnection is ‘in situ’ in Earth’s magnetosphere. This will lead to better predictions of space weather phenomena.

Magnetic reconnection is also believed to help trigger the spectacular aurora known as the Northern or Southern lights.

NASA MMS spacecraft fly in a pyramid pattern to capture the 3-D structure of the reconnection sites encountered. Credit: NASA
NASA MMS spacecraft fly in a pyramid pattern to capture the 3-D structure of the reconnection sites encountered. Credit: NASA

MMS is a Solar Terrestrial Probes Program, or STP, mission within NASA’s Heliophysics Division. The probes were built, integrated and tested at NASA Goddard which is responsible for overall mission management and operations.

Watch for Ken’s ongoing MMS coverage. He was onsite at the Kennedy Space Center in the days leading up to the launch and for the liftoff on March 12.

Stay tuned here for Ken’s continuing MMS, Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about MMS, Mars rovers, Orion, SpaceX, Antares, NASA missions and more at Ken’s upcoming outreach events:

Mar 13: “MMS, Orion, SpaceX, Antares, Curiosity Explores Mars,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

The Atlas V with MMS launches, as seen by this camera placed in the front of the launchpad. Copyright © Alex Polimeni
The Atlas V with MMS launches, as seen by this camera placed in the front of the launchpad. Copyright © Alex Polimeni
The Atlas V with MMS launches on March 12, 2015, as seen by this camera placed in the front of the launchpad. Copyright © Alex Polimeni
The Atlas V with MMS launches on March 12, 2015, as seen by this camera placed in the front of the launchpad. Copyright © Alex Polimeni
A United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Thursday, March 12, 2015, Florida.  Credit: Ken Kremer- kenkremer.com
A United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Thursday, March 12, 2015, Florida. Credit: Ken Kremer- kenkremer.com
A United Launch Alliance Atlas V 421 rocket is poised for blastoff at Cape Canaveral Air Force Station's Space Launch Complex-41 in preparation for launch of NASA's Magnetospheric Multiscale (MMS) science mission on March 12, 2015.  Credit: Ken Kremer- kenkremer.com
A United Launch Alliance Atlas V 421 rocket is poised for blastoff at Cape Canaveral Air Force Station’s Space Launch Complex-41 in preparation for launch of NASA’s Magnetospheric Multiscale (MMS) science mission on March 12, 2015. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com
MMS Project Manager Craig Tooley (right) and Ken Kremer (Universe Today) discuss  science objectives of NASA’s upcoming Magnetospheric Multiscale mission by 20 foot tall mated quartet of stacked spacecraft at the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
MMS Project Manager Craig Tooley (right) and Ken Kremer (Universe Today) discuss science objectives of NASA’s upcoming Magnetospheric Multiscale mission by 20 foot tall mated quartet of stacked spacecraft at the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

NASA Unravels Mysteries of Magnetic Reconnection with Nighttime Blastoff of MMS Satellite Quartet – Watch Live

A United Launch Alliance Atlas V 421 rocket is poised for blastoff at Cape Canaveral Air Force Station's Space Launch Complex-41 in preparation for launch of NASA's Magnetospheric Multiscale (MMS) science mission on March 12, 2015. Credit: Ken Kremer- kenkremer.com

KENNEDY SPACE CENTER, FL – A state of the art quartet of identical science satellites aimed at unraveling the mysteries of the process known as magnetic reconnection is slated for a spectacular nighttime blastoff tonight, March 12, atop a United Launch Alliance Atlas V rocket on Cape Canaveral, Florida.

The $1.1 Billion Magnetospheric Multiscale (MMS) mission is comprised of four formation flying and identically instrumented observatories whose objective is providing the first three-dimensional views of a fundamental process in nature known as magnetic reconnection.

Magnetic reconnection is a little understood natural process whereby magnetic fields around Earth connect and disconnect while explosively releasing vast amounts of energy. It occurs throughout the universe.

Liftoff is slated for 10:44 p.m. EDT Thursday March 12 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida.

The launch window extends for 30 minutes. You can watch the MMS launch live on NASA TV, below, starting at 8 p.m.



Broadcast live streaming video on Ustream

Spectators ringing the Florida space coast region and ranging well beyond should be treated to a magnificent fireworks display and skyward streak of perhaps several minutes – weather and clouds permitting.

Currently the weather forecast is 70 percent “GO” for favorable conditions at launch time. The primary concerns for a safe and successful launch are for cumulus clouds and thick clouds.

In the event of a 24 hour delay for any reason the weather forecast is 60 percent “GO.”

Technicians work on NASA’s 20-foot-tall Magnetospheric Multiscale (MMS) mated quartet of stacked observatories in the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
Technicians work on NASA’s 20-foot-tall Magnetospheric Multiscale (MMS) mated quartet of stacked observatories in the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

The 195 foot tall rocket and encapsulated MMS satellite payload were rolled out to Space Launch Complex-41 on Wednesday March 10 at 10 a.m. on the Mobile Launch Platform (MLP) about 1800 feet from the Vertical Integration Facility or VIF to the Cape Canaveral pad.

The two stage Atlas V rocket will deliver the MMS constellation to a highly elliptical orbit.

The venerable rocket with a 100% success rate will launch in the Atlas V 421 configuration with a 4-meter diameter Extra Extended Payload Fairing along with two Aerojet Rocketdyne solid rocket motors attached to the Atlas booster first stage.

A United Launch Alliance Atlas V 421 rocket is poised for blastoff at Cape Canaveral Air Force Station's Space Launch Complex-41 in preparation for launch of NASA's Magnetospheric Multiscale (MMS) science mission on March 12, 2015.  Credit: Ken Kremer- kenkremer.com
A United Launch Alliance Atlas V 421 rocket is poised for blastoff at Cape Canaveral Air Force Station’s Space Launch Complex-41 in preparation for launch of NASA’s Magnetospheric Multiscale (MMS) science mission on March 12, 2015. Credit: Ken Kremer- kenkremer.com

The Atlas first stage is powered by the RD AMROSS RD-180 engine and the Centaur upper stage is powered by the Aerojet Rocketdyne RL10A engine producing 22,300 lb of thrust.

The first stage is 12.5 ft in diameter and fueled with liquid propellants. The RD-180 burns RP-1 highly purified kerosene and liquid oxygen and delivers 860,200 lb of sea level thrust.

This is ULA’s 4th launch in 2015, the 53nd Atlas V mission and the fourth Atlas V 421 launch.

“This is the perfect time for this mission,” said Jim Burch, principal investigator of the MMS instrument suite science team at Southwest Research Institute (SwRI) in San Antonio, Texas.

“MMS is a crucial next step in advancing the science of magnetic reconnection. Studying magnetic reconnection near Earth will unlock the ability to understand how this process works throughout the entire universe.”

After a six month check out phase the probes will start science operation in September.

Unlike previous missions to observe the evidence of magnetic reconnection events, MMS will have sufficient resolution to measure the characteristics of ongoing reconnection events as they occur.

The four probes were built in-house by NASA at the agency’s Goddard Space Flight Center in Greenbelt, Maryland where I visited them during an inspection tour by NASA Administrator Charles Bolden.

I asked Bolden to explain the goals of MMS during a one-on-one interview.

“MMS will help us study the phenomena known as magnetic reconnection and help us understand how energy from the sun – magnetic and otherwise – affects our own life here on Earth,” Bolden told Universe Today.

“MMS will study what effects that process … and how the magnetosphere protects Earth.”

MMS measurements should lead to significant improvements in models for yielding better predictions of space weather and thereby the resulting impacts for life here on Earth as well as for humans aboard the ISS and robotic satellite explorers in orbit and the heavens beyond.

The best place to study magnetic reconnection is ‘in situ’ in Earth’s magnetosphere. This will lead to better predictions of space weather phenomena.

Magnetic reconnection is also believed to help trigger the spectacular aurora known as the Northern or Southern lights.

NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

MMS is a Solar Terrestrial Probes Program, or STP, mission within NASA’s Heliophysics Division

Watch for Ken’s ongoing MMS coverage and he’ll be onsite at the Kennedy Space Center in the days leading up to the launch on March 12.

Stay tuned here for Ken’s continuing MMS, Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s Magnetospheric Multiscale (MMS) Spacecraft Set for March Blastoff to study Earth’s Magnetic Reconnection Events

Technicians work on NASA’s 20-foot-tall Magnetospheric Multiscale (MMS) mated quartet of stacked observatories in the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

NASA’s first mission dedicated to study the process in nature known as magnetic reconnection undergoing final preparation for launch from Cape Canaveral, Florida in just under two weeks time.

The Magnetospheric Multiscale (MMS) mission is comprised of a quartet of identically instrumented observatories aimed at providing the first three-dimensional views of a fundamental process in nature known as magnetic reconnection.

Magnetic reconnection is the process whereby magnetic fields around Earth connect and disconnect while explosively releasing vast amounts of energy. It occurs throughout the universe.

“Magnetic reconnection is one of the most important drivers of space weather events,” said Jeff Newmark, interim director of the Heliophysics Division at NASA Headquarters in Washington.

“Eruptive solar flares, coronal mass ejections, and geomagnetic storms all involve the release, through reconnection, of energy stored in magnetic fields. Space weather events can affect modern technological systems such as communications networks, GPS navigation, and electrical power grids.”

The four MMS have been stacked on top of one another like pancakes, encapsulated in the payload fairing, transported to the launch pad, hoisted and mated to the top of the 195-foot-tall rocket.

NASA's Magnetospheric Multiscale (MMS) observatories are shown here in the clean room being processed for a March 12, 2015 launch from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida.  Credit: NASA/Ben Smegelsky
NASA’s Magnetospheric Multiscale (MMS) observatories are shown here in the clean room being processed for a March 12, 2015 launch from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida. Credit: NASA/Ben Smegelsky

The nighttime launch of MMS on a United Launch Alliance Atlas V rocket should put on a spectacular sky show for local spectators along the Florida space coast as well as more distant located arcing out in all directions.

Liftoff is slated for 10:44 p.m. EDT Thursday March 12 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida.

The launch window extends for 30 minutes.

Artist rendition of the four MMS spacecraft in orbit in Earth’s magnetic field. Credit: NASA
Artist rendition of the four MMS spacecraft in orbit in Earth’s magnetic field. Credit: NASA

After a six month check out phase the probes will start science operation in September.

Unlike previous missions to observe the evidence of magnetic reconnection events, MMS will have sufficient resolution to measure the characteristics of ongoing reconnection events as they occur.

The four probes were built in-house by NASA at the agency’s Goddard Space Flight Center in Greenbelt, Maryland where is visited them during an inspection tour by NASA Administrator Charles Bolden.

I asked Bolden to explain the goals of MMS during a one-on-one interview.

“MMS will help us study the phenomena known as magnetic reconnection and help us understand how energy from the sun – magnetic and otherwise – affects our own life here on Earth,” Bolden told Universe Today.

“MMS will study what effects that process … and how the magnetosphere protects Earth.”

MMS measurements should lead to significant improvements in models for yielding better predictions of space weather and thereby the resulting impacts for life here on Earth as well as for humans aboard the ISS and robotic satellite explorers in orbit and the heavens beyond.

NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

The best place to study magnetic reconnection is ‘in situ’ in Earth’s magnetosphere. This will lead to better predictions of space weather phenomena.

“This is the perfect time for this mission,” said Jim Burch, principal investigator of the MMS instrument suite science team at Southwest Research Institute (SwRI) in San Antonio, Texas.

“MMS is a crucial next step in advancing the science of magnetic reconnection. Studying magnetic reconnection near Earth will unlock the ability to understand how this process works throughout the entire universe.”

Magnetic reconnection is also believed to help trigger the spectacular aurora known as the Northern or Southern lights.

MMS is a Solar Terrestrial Probes Program, or STP, mission within NASA’s Heliophysics Division.

Watch for Ken’s ongoing MMS coverage and he’ll be onsite at the Kennedy Space Center in the days leading up to the launch on March 12.

Stay tuned here for Ken’s continuing MMS, Earth and planetary science and human spaceflight news.

Ken Kremer
………….
Learn more about MMS, Mars rovers, Orion, SpaceX, Antares, NASA missions and more at Ken’s upcoming outreach events:

Mar 6: “MMS Update, Future of NASA Human Spaceflight, Curiosity on Mars,” Delaware Valley Astronomers Assoc (DVAA), Radnor, PA, 7 PM.

Mar 10-12: “MMS, Orion, SpaceX, Antares, Curiosity Explores Mars,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Orbital ATK Aims for March 2016 Antares Rocket Launch Restart with New Engines

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com

The newly merged company Orbital ATK is aiming to restart launches of their “upgraded Antares” rocket in March 2016 using completely new engines, following the catastrophic explosion on Oct. 28, 2014 that destroyed the rocket seconds after blastoff from a Virginia launch pad. Antares was carrying a Cygnus module loaded with supplies on a critical space station resupply mission for NASA.

The March 2016 launch date of Antares from the Wallops Island base along Virginia’s eastern shore was announced by David Thompson, Orbital ATK, President and CEO, during a recent conference call with investors and analysts regarding the formal merger of Orbital Sciences and ATK.

“The target date for that [Antares launch] is the 1st of March next year,” said Thompson.

Cygnus will be fully loaded with new supplies for the station crew.

“The first launch … will have a full cargo load on board.”

The Orbital Sciences Corp. commercial Antares rocket was destroyed in a raging inferno about 15 seconds after liftoff on Oct. 28 when one of the Soviet-era built first stage engines apparently exploded and cascaded into a spectacular aerial fireball just above the launch pad 0A at NASA’s Wallops Flight Facility on the doomed Orb-3 mission carrying the Cygnus resupply module to the International Space Station (ISS).

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Orbital’s privately developed Cygnus pressurized cargo freighter was loaded with nearly 5000 pounds (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on the Orb-3 mission. The module and all its contents were destroyed.

Orbital established an independent accident investigation review board immediately following the launch failure.

“We are about four months now into the recovery from the failure,’ said Thompson.

A turbopump failure in one of the rockets Soviet-era first stage engines has been identified as the most likely cause of the Antares destruction, according to official statements from David Thompson.

The AJ26 engines were originally manufactured some 40 years ago in the then Soviet Union as the NK-33. They were refurbished and “Americanized” by Aerojet Rocketdyne.

Credit: Ken Kremer – kenkremer.com
Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

“The next Cygnus will be launched on the upgraded Antares from Wallops Island. The target date for that is the 1st of March next year.”

After the launch failure Orbital, decided to ditch the trouble plagued AJ-26 and “re-engineered” the vehicle with new engines.

The Antares first stage had been powered by a pair of the aging AJ26 engines. These will now be replaced by a pair of newly manufactured Russian RD-181 engines, assembled and purchased from NPO Energomash.

“The first launch of the re-engineered vehicle in March of next year … will have a full cargo load on board.”

Thompson said the March 2016 launch target date will be preceded by a hot fire test of the first stage engines, which is currently planned to take place in January 2015. They will not conduct a demonstration launch and have opted for a full up space station resupply flight.

“We’re going to go with the cargo load on the first launch. What we are going to do in advance of that, in January of next year, is we’re going to take the first stage of Antares out to the launch pad with the new engines and do a flight readiness firing, somewhat similar to what we did back in early 2013, in advance of the first Antares flight,” said Thompson.

“But other than that, unless something came up there that was surprising, we should then be able to proceed pretty expeditiously to the first launch of the re-engineered vehicle in March of next year, and that will have a full cargo load on board.”

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

Thompson also reiterated that Orbital will fully meet its resupply services contarct with NASA and make up for the lost cargo.

The Orbital-3, or Orb-3, mission that ended in disaster on Oct 28, was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion. Under the CRS program Orbital is to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

“The focus all along has been to do everything we can to fulfill our commitments to delivering cargo to the space station for NASA, and to minimize any disruption that we can to the delivery schedules.”

Towards that end Orbital ATK has contracted with United Launch Alliance (ULA) to launch at least one and up to two Cygnus cargo missions to the International Space Station (ISS) under NASA’s Commercial Resupply Services (CRS) program.

The first Cygnus mission would liftoff sometime late in the fourth quarter of 2015 aboard an Atlas V 401 vehicle from Space Launch Complex 41 (SLC-41) at Cape Canaveral Air Force Station in Florida.

I watched the unfolding disaster first hand from the media viewing site about 1.8 miles away and filed eyewitness reports at the time. Several of my launch pad remote cameras were set up at the pad. They were impounded and the images were used by investigators during the initial investigation. They were returned to me about a month later and are featured here and in my earlier Antares reports.

Watch here for Ken’s ongoing reporting about Antares and NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Credit: Ken Kremer – kenkremer.com

NASA Launches Revolutionary Earth Science Satellite Measuring Soil Moisture Cycle

NASA's Soil Moisture Active Passive (SMAP) observatory, on a United Launch Alliance Delta II rocket, is seen after the mobile service tower was rolled back Friday, Jan. 30 at Space Launch Complex 2, Vandenberg Air Force Base, Calif. Image Credit: NASA/Bill Ingalls

NASA’s Soil Moisture Active Passive (SMAP) observatory, on a United Launch Alliance Delta II rocket, is seen after the mobile service tower was rolled back Friday, Jan. 30 at Space Launch Complex 2, Vandenberg Air Force Base, Calif.
Image Credit: NASA/Bill Ingalls
Story updated[/caption]

At dawn this morning (Jan. 31) NASA launched an advanced Earth science satellite aimed at making measurements of our planet’s surface soil moisture and freeze/thaw states from space that will revolutionize our understanding of the water, energy, and carbon cycles driving all life on Earth, aid weather forecasting and improve climate change models.

NASA’s new Soil Moisture Active Passive (SMAP) observatory thundered off the pad at 6:22 a.m. PST (9:22 a.m. EST) Saturday atop a two stage United Launch Alliance Delta II rocket from Space Launch Complex 2 on Vandenberg Air Force Base, California.

The $916 million satellite successfully separated from the rocket’s second stage some 57 minutes after the flawless liftoff and was injected into an initial 411- by 425-mile (661- by 685-kilometer) orbit. The spacecraft then deployed its solar arrays and telemetry indicated it was in excellent health.

“We’re in contact with SMAP and everything looks good right now,” NASA Launch Manager Tim Dunn said.

“Deployment of the solar arrays is underway. We just couldn’t be happier.”

SMAP separated from the second stage while pointed toward the sun as seen in the video below from a rocket mounted camera:

Video Caption: A camera on the second stage of the Delta II rocket captured this footage as the SMAP spacecraft pushed itself away from the rocket to complete the delivery of the Earth-observing spacecraft to its proper orbit following Jan. 31, 2015 liftoff. Credit: NASA TV/ULA

SMAP is NASA’s 1st Earth observing satellite designed to make high resolution global observations of Earth’s vital surface soil moisture content and freeze/thaw cycle just below your feet. It will aid global forecasting and have broad applications for science and society.

SMAP’s combined radar and radiometer instruments will peer into the top 2 inches (5 centimeters) of soil, through clouds and moderate vegetation cover, day and night, to produce the highest-resolution, most accurate soil moisture maps ever obtained from space, says NASA.

The blastoff of SMAP successfully concluded NASA’s ambitious plans to launch a record breaking total of five Earth science satellites in less than a year’s time.

“The launch of SMAP completes an ambitious 11-month period for NASA that has seen the launch of five new Earth-observing space missions to help us better understand our changing planet,” said NASA Administrator Charles Bolden.

“Scientists and policymakers will use SMAP data to track water movement around our planet and make more informed decisions in critical areas like agriculture and water resources.”

Artist's rendering of the Soil Moisture Active Passive satellite. The width of the region scanned on Earth’s surface during each orbit is about 620 miles (1,000 kilometers).  Image credit: NASA/JPL-Caltech
Artist’s rendering of the Soil Moisture Active Passive satellite. The width of the region scanned on Earth’s surface during each orbit is about 620 miles (1,000 kilometers). Image credit: NASA/JPL-Caltech

SMAP is projected to last for at least a three year primary mission.

The prior NASA Earth science instrument launched was the Cloud Aerosol Transport System (CATS) payload hauled to space by the SpaceX CRS-4 Dragon on Jan. 10, 2015 and recently installed on the exterior of the ISS. Read my CATS installation story – here.

The three earlier NASA Earth science missions launched over the past year included ISS-RapidScat in September 2014, the Global Precipitation Measurement (GPM) Core Observatory, a joint mission with the Japan Aerospace Exploration Agency, in February 2014, and the Orbiting Carbon Observatory-2 (OCO-2) carbon observatory in July 2014.

“Congratulations to the NASA Launch Services Program team, JPL and all of our mission partners on today’s successful launch of the SMAP satellite,” said Jim Sponnick, ULA vice president, Atlas and Delta Programs.

“It is our honor to launch this important Earth science mission to help scientists observe and predict natural hazards, and improve our understanding of Earth’s water, energy and carbon cycles.”

SMAP will provide high-resolution, space-based measurements of soil moisture and its state — frozen or thawed — a new capability that will allow scientists to better predict natural hazards of extreme weather, climate change, floods and droughts, and help reduce uncertainties in our understanding of Earth’s water, energy and carbon cycles, according to a NASA description.

The mission will map the entire globe every two to three days for at least three years and provide the most accurate and highest-resolution maps of soil moisture ever obtained. The spacecraft’s final circular polar orbit will be 426 miles (685 kilometers), at an inclination of 98.1 degrees. The spacecraft will orbit Earth once every 98.5 minutes and repeat the same ground track every eight days.

“All subsystems are being powered on and checked out as planned,” Kent Kellogg, the SMAP project manager, during a post-launch press conference.

“Communications, guidance and control, computers and power are all operating nominally.”

The observatory is in excellent health. Its instruments will be turned on in 11 days.

Today’s blastoff of SMAP marks ULA’s second successful launch this month as well as the second of 13 planned for 2015. ULA’s first launch of 2015 was MUOS-3 from Cape Canaveral on Jan. 20.

ULA’s next launch involves NASA’s Magnetospheric Multiscale Mission (MMS) to study Earth’s magnetic reconnection. It is scheduled for launch on an Atlas V 421 booster on March 12 from Cape Canaveral. See my up close visit with MMS and NASA Administrator Charles Bolden at NASA Goddard Space Flight Center detailed in my story – here.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Most Powerful Atlas V Delivers a Most Spectacular Nighttime Sky Show Launch for US Navy

Blastoff of ULA Atlas V rocket lofting MUOS-3 to orbit for the US Navy from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: Alan Walters/AmericaSpace

Blastoff of ULA Atlas V rocket lofting MUOS-3 to orbit for the US Navy from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: Alan Walters/AmericaSpace
See launch gallery below![/caption]

Launching on its milestone 200th mission, the most powerful version of the venerable Atlas-Centaur rocket put on a most spectacular nighttime sky show on Tuesday evening, (Jan. 20) that mesmerized spectators along the Florida Space Coast on a mission to deliver a powerful new next-generation communications satellite to orbit for the US Navy.

The United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite (MUOS-3) for the United States Navy successfully launched to geostationary orbit from Space Launch Complex-41 at 8:04 p.m. EST from Cape Canaveral Air Force Station, Florida on Jan. 20, 2015.

The MUOS-3 launch opened ULA’s planned 13 mission manifest for 2015 with a boisterous bang as the Atlas V booster thundered off the seaside space coast pad.

Streak shot of United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite to orbit for the United States Navy as it launched from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: John Studwell/AmericaSpace
Streak shot of United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite to orbit for the United States Navy as it launched from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: John Studwell/AmericaSpace

The MUOS constellation is a next-generation narrowband US Navy tactical satellite communications system designed to significantly improve ground communications to US forces on the move and around the globe.

“The ULA team is honored to deliver this critical mission into orbit for the U.S. Navy and U.S. Air Force with the support of our many mission partners,” said Jim Sponnick, ULA vice president, Atlas and Delta Programs.

This is the third satellite in the MUOS series and will provide military users 10 times more communications capability over existing systems, including simultaneous voice, video and data, leveraging 3G mobile communications technology. It was built by Lockheed Martin.

Launch of ULA  Atlas V rocket sending MUOS-3 satcom to orbit for the US Navy from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: Julian Leek
Launch of ULA Atlas V rocket sending MUOS-3 satcom to orbit for the US Navy from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: Julian Leek

The unmanned Atlas V expendable rocket launched in its mightiest configuration known as the Atlas V 551.

The 206 foot-tall rocket features a 5-meter diameter payload fairing, five Aerojet Rocketdyne first stage strap on solid rocket motors and a single engine Centaur upper stage powered by the Aerojet Rocketdyne RL10C-1 engine.

The first stage is powered by the Russian-built dual nozzle RD AMROSS RD-180 engine. Combined with the five solid rocket motors, the Atlas V first stage generates over 2.5 million pounds of liftoff thrust.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

And the rocket needed all that thrust because the huge MUOS-3 was the heftiest payload lofted by an Atlas V booster, weighing in at some 15,000 pounds.

“The MUOS-3 spacecraft is the heaviest payload to launch atop an Atlas V launch vehicle. The Atlas V generated more than two and half million pounds of thrust at liftoff to meet the demands of lifting this nearly 7.5-ton satellite,” noted Sponnick.

The Atlas V 551 rockets into the darkened Florida sky at 8:04 p.m. EST Tuesday, 20 January, to deliver MUOS-3 into orbit. Photo Credit: Mike Killian / AmericaSpace
The Atlas V 551 rockets into the darkened Florida sky at 8:04 p.m. EST Tuesday, 20 January, to deliver MUOS-3 into orbit. Photo Credit: Mike Killian / AmericaSpace

The first Atlas rocket was first launched some 52 years ago.

“Today’s launch was the 200th Atlas-Centaur launch – a very sincere congratulations to the many women and men responsible for the incredible success of the Centaur upper stage over the last 5 decades!”

Overall this was the 52nd Atlas V mission and the fifth in the Atlas V 551 configuration.

The Atlas V 551 version has previously launched two prominent NASA planetary science missions including the New Horizons mission in 2006 that is about to reach Pluto and the Juno orbiter in 2011 that will arrive at Jupiter in July 2016. It was also used to launch MUOS-1 and MUOS-2.

United Launch Alliance successful MUOS-3 mission tonight! 20 Jan 2015.  Photo Credit: Matthew Travis / Zero-G News
United Launch Alliance successful MUOS-3 mission tonight! 20 Jan 2015. Photo Credit: Matthew Travis / Zero-G News

ULA’s second launch in 2015 thunders aloft from the US West Coast with NASA’s Soil Moisture Active Passive mission (SMAP) next week.

SMAP is the first US Earth-observing satellite designed to collect global observations of surface soil moisture.

SMAP will blastoff from Space Launch Complex 2 at Vandenberg AFB at 9:20 a.m. EST (6:20 a.m. PST) on ULA’s Delta II rocket.

A United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite for the United States Navy launched from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite for the United States Navy launched from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: United Launch Alliance

In another major milestone coming soon, the Atlas V is right now being man rated since it was chosen to launch the Boeing CST-100 space taxi, which NASA selected as one of two new commercial crew vehicles to launch US astronauts to the ISS as soon as 2017.

A United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite for the United States Navy launched from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite for the United States Navy launched from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: United Launch Alliance

The next Atlas launch involves NASA’s Magnetospheric Multiscale Mission (MMS) to study Earth’s magnetic reconnection. It is scheduled for launch on an Atlas V 421 booster on March 12 from Cape Canaveral. See my up close visit with MMS and NASA Administrator Charles Bolden at NASA Goddard Space Flight Center detailed in my story – here.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Busy Year of 13 Launches by ULA in 2015 Begins with Blastoffs for the Navy and NASA

MUOS-3 communications satellite for the US Navy awaits launch atop an Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL on Jan. 20, 2015. Credit: John Studwell/AmericaSpace

A busy year of 13 space launches by rocket provider United Launch Alliance (ULA) in 2015 begins with a pair of blastoffs for the US Navy and NASA tonight and next week, emanating from both the US East and West Coasts.

The hefty manifest of 13 liftoffs in 2015 comes hot on the heels of ULA’s banner year in 2014 whereby they completed every one of the firm’s 14 planned launches in 2014 with a 100% success rate.

“What ULA has accomplished in 2014, in support of our customers’ missions, is nothing short of remarkable,” said ULA CEO Tory Bruno.

“When you think about every detail – all of the science, all of the planning, all of the resources – that goes into a single launch, it is hard to believe that we successfully did it at a rate of about once a month, sometimes twice.”

ULA’s stable of launchers includes the Delta II, Delta IV and the Atlas V. They are in direct competition with the Falcon 9 rocket from SpaceX founded by billionaire Elon Musk.

And ULA’s 2015 launch calendar begins tonight with a milestone launch for the US Navy that also marks the 200th launch overall of the venerable Atlas-Centaur rocket that has a renowned history dating back some 52 years to 1962 with multiple variations.

And tonight’s blastoff of the Multi-User Objective System (MUOS-3) satellite for the US Navy involves using the most powerful variant of the rocket, known as the Atlas V 551.

Liftoff of MUOS-3 is set for 7:43 p.m. EDT from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. The launch window extends for 44 minutes and the weather outlook is very favorable. It will be carried live on a ULA webcast.

MUOS-3 Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Jan. 20, 2015. Credit: ULA
MUOS-3 Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Jan. 20, 2015. Credit: ULA

The second ULA launch of 2015 comes just over 1 week later on January 29, lofting NASA’s SMAP Earth observation satellite on a Delta II rocket from Vandenberg Air Force Base in California.

MUOS is a next-generation narrowband tactical satellite communications system designed to significantly improve ground communications for U.S. forces on the move, according to ULA.

This is the third satellite in the MUOS series and will provide military users 10 times more communications capability over existing systems, including simultaneous voice, video and data, leveraging 3G mobile communications technology.

ULA’s second launch in 2015 thunders aloft from the US West Coast with NASA’s Soil Moisture Active Passive mission (SMAP). It is the first US Earth-observing satellite designed to collect global observations of surface soil moisture.

SMAP will blastoff from Space Launch Complex 2 at Vandenberg AFB at 9:20 a.m. EST (6:20 a.m. PST) on ULA’s Delta II rocket.

NASA's Soil Moisture Active Passive mission (SMAP) will lift off from Space Launch Complex 2 at Vandenberg Air Force Base in California at 9:20 a.m. EST (6:20 a.m. PST) on a United Launch Alliance Delta II rocket.   Credit:  NASA
NASA’s Soil Moisture Active Passive mission (SMAP) will lift off from Space Launch Complex 2 at Vandenberg Air Force Base in California at 9:20 a.m. EST (6:20 a.m. PST) on a United Launch Alliance Delta II rocket. Credit: NASA

“It goes without saying: ULA had a banner year,” Bruno said. “As we look ahead to 2015, we could not be more honored to continue supporting our nation in one of the most technologically complex, critical American needs: affordable, reliable access to space.”

ULA began operations in December 2006 with the merger of the expendable launch vehicle operations of Boeing and Lockheed Martin.

ULA’s Delta IV Heavy is currently the world’s most powerful rocket and flawlessly launched NASA’s Orion capsule on Dec. 5, 2014 on its highly successful uncrewed maiden test flight on the EFT-1 mission.

Overall, the 14-mission launch manifest in 2014 included 9 national security space missions, 3 space exploration missions, including NASA’s Orion EFT-1 and 2 commercial missions.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Beyond MUOS-3 and SMAP, the launch manifest on tap for 2015 also includes additional NASA science satellites, an ISS commercial cargo resupply mission as well as more GPS satellites for military and civilian uses and top secret national security launches using the Delta II, Delta IV and the Atlas V boosters.

NASA’s Magnetospheric Multiscale Mission (MMS) to study Earth’s magnetic reconnection is scheduled for launch on an Atlas V 421 booster on March 12 from Cape Canaveral. See my up close visit with MMS and NASA Administrator Charles Bolden at NASA Goddard Space Flight Center detailed in my story – here.

NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

In March, June and September the GPS 2F-9, 2F-10 and 2F-11 navigation satellites will launch on Delta IV and Atlas V rockets from Cape Canaveral.

Two top secret NRO satellites are set to launch on a Delta IV and Atlas in April and August from Vandenberg.

An Air Force Orbital Test Vehicle (OTV) space plane may launch as soon as May atop an Atlas V from Cape Canaveral.

The MUOS-4 liftoff is set for August on another Atlas from the Cape.

The Morelos 3 communications satellite for the Mexican Ministry of Communications and Transportation is due to launch in October from the Cape.

In November, the Atlas V will be pressed into service for the first time to launch the Orbital Sciences Cygnus Orb-4 cargo vehicle to the International Space Station (ISS) as a replacement rocket for the Orbital Sciences Antares rocket which is grounded following its catastrophic Oct. 28 explosion on the Orb-3 mission from NASA Wallops.

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9, 2014. The next Cygnus Orb-4 will launch for the first time atop an Atlas V in Nov. 2015. Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com

The Orb-4 launch also marks ULA’s first launch to the ISS. It may be followed by another Cygnus launch atop an Atlas V in 2016 as Orbital works to bring the Antares back into service.

Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

In another major milestone down the road, the Atlas V is being man rated since it was chosen to launch the Boeing CST-100 space taxi which NASA selected as one of two new commercial crew vehicles to launch US astronauts to the ISS as soon as 2017.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s First Orion Crew Module Arrives Safely Back at Kennedy Space Center

Homecoming view of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014 after successful blastoff on Dec. 5, 2014. Credit: Ken Kremer - kenkremer.com

KENNEDY SPACE CENTER, FL – After a history making journey of more than 66,000 miles through space, ocean splash down and over 2700 mile cross country journey through the back woods of America, NASA’s pathfinding Orion crew capsule has returned to its home base at the Kennedy Space Center in Florida.

“The Orion mission was a spectacular success,” said Jules Schneider, Lockheed Martin Program manager for Orion at KSC, during a homecoming event attended by space journalists including Universe Today on Friday, Dec. 19, 2014.

“We achieved 85 of 87 test objectives,” noted Schneider. “Only an up righting air bag did not deploy fully after splashdown. And we are looking into that. Otherwise the mission went extremely well.”

Orion’s early homecoming was unexpected and a pleasant surprise since it hadn’t been expected until next week just prior to Christmas.

Orion flew on its two orbit, 4.5 hour flight maiden test flight on the Exploration Flight Test-1 (EFT-1) mission that started NASA’s long road to send astronauts beyond Earth and eventually to Mars in the 2030s.

The media were able to see the entire Orion capsule from top to bottom, including the exposed, blackened and heat scorched heat shield which had to protect the vehicle from fiery reentry temperatures exceeding 4000 F (2200 C).

 Top view of NASA’s maiden Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014.   Credit: Ken Kremer - kenkremer.com

Top view of NASA’s maiden Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014. Credit: Ken Kremer – kenkremer.com

Orion is being stored for now inside the Launch Abort System Facility (LASF)

“The heat shield worked extremely well and did its job,” Schneider told Universe Today.

Engineers took three samples from the 16.5 foot diameter heat shield and they are in for analysis.

“I don’t know if you can tell, we’ve actually taken a few core samples off the heat shield already and we’re looking at those,” said Schneider. “We will be removing the heat shield from this vehicle later in February so we will get an ever better look at it.”

One of the main objectives was to test the heat shield during the high speed atmospheric plummet of about 20000 mph (32000 kph) that reached approximately 85% of what astronauts will experience during a return from future voyages to Mars and Asteroids in the next decade and beyond.

“All of Orion’s system performed very well,” Schneider told me in an interview beside Orion.

“And the capsule used only about 90 pounds of its about 300 pounds of hydrazine propellant stored on board.”

“All of the separation events went beautifully and basically required virtually no maneuvering fuel to control the attitude of the capsule. The expected usage was perhaps about 150 pounds.”

“Therefore there is a lot more hydrazine fuel on board than we expected. And we had to be cautious in transporting Orion across the country.”

Up close view of three core samples taken from the heat shield of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014.   Credit: Ken Kremer - kenkremer.com
Up close view of three core samples taken from the heat shield of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014. Credit: Ken Kremer – kenkremer.com

Lockheed Martin is the Orion prime contractor.

The Orion arrived module arrived back at KSC, Thursday afternoon after being hauled across our country mostly on back country roads, and with no publicity or fanfare, on an unmarked flat bed truck to minimize interaction with the public.

“It was like a black ops operation,” said one of the team members responsible to safely transporting Orion from Naval Base San Diego to KSC.

NASA obtained special permits to move Orion from all the states travelled between California and Florida.

“We didn’t want any publicity because the capsule was still loaded with residual toxic chemicals like ammonia and hydrazine.” These were used to power and fuel the capsule.”

Orion’s test flight began with a flawless launch on Dec. 5 as it roared to orbit atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

The unpiloted test flight of Orion on the EFT-1 mission ignited NASA’s roadmap to send Humans to Mars by the 2030s by carrying the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.

Humans have not ventured beyond low Earth orbit since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.

Watch for more details and photos later.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Watch for Ken’s ongoing Orion coverage from onsite at the Kennedy Space Center about the historic launch on Dec. 5.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Jules Schneider, Lockheed Martin Program manager for Orion at KSC, and Ken Kremer/Universe Today discuss Orion during arrival event at NASA’s Kennedy Space Center in Florida on Dec. 19, 2014.   Credit: Ken Kremer - kenkremer.com
Jules Schneider, Lockheed Martin Program manager for Orion at KSC, and Ken Kremer/Universe Today discuss Orion during arrival event at NASA’s Kennedy Space Center in Florida on Dec. 19, 2014. Credit: Ken Kremer – kenkremer.com

Amazing Up Close Videos Capture Orion’s Final Descent, Splashdown and Ocean Recovery

The Orion crew module was recovered Dec. 5, 2014 after splashdown in the Pacific Ocean about 600 miles off the coast of San Diego, California. Credit: U.S. Navy

Video Caption: Last moments of Orion descent as viewed from the recovery ship USS Anchorage. Credit: NASA/US Navy

Relive the final moments of the first test flight of NASA’s Orion spacecraft on Dec. 5, 2014, through this amazing series of up close videos showing the spacecraft plummeting back to Earth through the rollicking ocean recovery by dive teams from the US Navy and the USS Anchorage amphibious ship.

The two orbit, 4.5 hour flight maiden test flight of Orion on the Exploration Flight Test-1 (EFT-1) mission was a complete success.

It was brought back to land to the US Naval Base San Diego, California.

Orion’s test flight began with a flawless launch on Dec. 5 as it roared to orbit atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

The unpiloted test flight of Orion on the EFT-1 mission ignited NASA’s roadmap to send Humans to Mars by the 2030s by carrying the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.

Humans have not ventured beyond low Earth orbit since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.

Video Caption: NASA TV covers the final moments of Orion spacecraft descent and splashdown in the Pacific Ocean approximately 600 miles southwest of San Diego on Dec. 5, 2014, as viewed live from the Ikhana airborne drone. Credit: NASA TV

The spacecraft was loaded with over 1200 sensors to collect critical performance data from numerous systems throughout the mission for evaluation by engineers.

EFT-1 tested the rocket, second stage, and jettison mechanisms as well as avionics, attitude control, computers, environmental controls, and electronic systems inside the Orion spacecraft and ocean recovery operations.

It also tested the effects of intense radiation by traveling twice through the Van Allen radiation belt.

After successfully accomplishing all its orbital flight test objectives, the capsule fired its thrusters and began the rapid fire 10 minute plummet back to Earth.

During the high speed atmospheric reentry, it approached speeds of 20,000 mph (32,000 kph), approximating 85% of the reentry velocity for astronauts returning from voyages to the Red Planet.

The capsule endured scorching temperatures near 4,000 degrees Fahrenheit in a critical and successful test of the 16.5-foot-wide heat shield and thermal protection tiles.

The entire system of reentry hardware, commands, and 11 drogue and main parachutes performed flawlessly.

Finally, Orion descended on a trio of massive red and white main parachutes to achieve a statistical bulls-eye splashdown in the Pacific Ocean, 600 miles southwest of San Diego, at 11:29 a.m. EST.

It splashed down within one mile of the touchdown spot predicted by mission controllers after returning from an altitude of over 3600 miles above Earth.

The three main parachutes slowed Orion to about 17 mph (27 kph).

Here’s a magnificent up close and personal view direct from the US Navy teams that recovered Orion on Dec. 5, 2014.

Video Caption: Just released footage of the Orion Spacecraft landing and recovery! See all the sights and sounds, gurgling, and more from onboard the Zodiac boats with the dive teams on Dec. 5, 2014. See the initial recovery operations, including safing the crew module and towing it into the well deck of the USS Anchorage, a landing platform-dock ship. Credit: US Navy

Navy teams in Zodiac boats had attached a collar and winch line to Orion at sea and then safely towed it into the flooded well deck of the USS Anchorage and positioned it over rubber “speed bumps.”

Next they secured Orion inside its recovery cradle and transported it back to US Naval Base San Diego where it was off-loaded from the USS Anchorage.

The Orion EFT-1 spacecraft was recovered by a combined team from NASA, the U.S. Navy, and Orion prime contractor Lockheed Martin.

Orion has been offloaded from the USS Anchorage and moved about a mile to the “Mole Pier” where Lockheed Martin technicians have conducted the first test inspection of the crew module and collected test data.

It will soon be hauled on a flatbed truck across the US for a nearly two week trip back to Kennedy where it will arrive just in time for the Christmas holidays.

NASA Administrator Charles Bolden briefs the media about the ‘Big Deal’ goals of the first Orion deep space crew module during prelaunch meeting backdropped by Orion and Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida prior to launch on Dec. 5, 2014.   Credit: Ken Kremer - kenkremer.com
NASA Administrator Charles Bolden briefs the media about the “Big Deal” goals of the first Orion deep space crew module during prelaunch meeting backdropped by Orion and Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida prior to launch on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

Technicians at KSC will examine every nook and cranny of Orion and will dissemble it for up close inspection and lessons learned.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com
Prelaunch night view of NASA’s first Orion spacecraft bolted atop triple barreled United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.  Credit: Ken Kremer - kenkremer.com
Prelaunch night view of NASA’s first Orion spacecraft bolted atop triple barreled United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer – kenkremer.com