Why “The Big Bang” Is a Terrible Name

Have a discussion about the origins of the Universe and, ere long, someone will inevitably use the term “the Big Bang” to describe the initial moment of expansion of everything that was to everything that is. But in reality “Big Bang” isn’t a very good term since “big” implies size (and when it occurred space didn’t technically exist yet) and there was no “bang.” In fact the name wasn’t ever even meant to be an official moniker, but once it was used (somewhat derisively) by British astronomer Sir Fred Hoyle in a radio broadcast in 1949, it stuck.

Unfortunately it’s just so darn catchy.

This excellent video from minutephysics goes a bit more into depth as to why the name is inaccurate — even though we’ll likely continue using it for quite some time. (Thanks to Sir Hoyle.)

And you have to admit, a television show called “The Everywhere Stretch Theory” would never have caught on. Bazinga!

What Is A Quasar?

What Is A Quasar?

I love it when scientists discover something unusual in nature. They have no idea what it is, and then over decades of research, evidence builds, and scientists grow to understand what’s going on.

My favorite example? Quasars.

Astronomers first knew they had a mystery on their hands in the 1960s when they turned the first radio telescopes to the sky.

They detected the radio waves streaming off the Sun, the Milky Way and a few stars, but they also turned up bizarre objects they couldn’t explain. These objects were small and incredibly bright.

They named them quasi-stellar-objects or “quasars”, and then began to argue about what might be causing them. The first was found to be moving away at more than a third the speed of light.

But was it really?

An artist's conception of jets protruding from an AGN.
An artist’s conception of jets protruding from an AGN.
Maybe we were seeing the distortion of gravity from a black hole, or could it be the white hole end of a wormhole. And If it was that fast, then it was really, really far… 4 billion light years away. And it generating as much energy as an entire galaxy with a hundred billion stars.

What could do this?

Here’s where Astronomers got creative. Maybe quasars weren’t really that bright, and it was our understanding of the size and expansion of the Universe that was wrong. Or maybe we were seeing the results of a civilization, who had harnessed all stars in their galaxy into some kind of energy source.

Then in the 1980s, astronomers started to agree on the active galaxy theory as the source of quasars. That, in fact, several different kinds of objects: quasars, blazars and radio galaxies were all the same thing, just seen from different angles. And that some mechanism was causing galaxies to blast out jets of radiation from their cores.

But what was that mechanism?

This artist's concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. Image credit: NASA/ESA
This artist’s concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. Image credit: NASA/ESA
We now know that all galaxies have supermassive black holes at their centers; some billions of times the mass of the Sun. When material gets too close, it forms an accretion disk around the black hole. It heats up to millions of degrees, blasting out an enormous amount of radiation.

The magnetic environment around the black hole forms twin jets of material which flow out into space for millions of light-years. This is an AGN, an active galactic nucleus.

An artist's impression of how quasars might be able to construct their own host galaxies. Image Credit: ESO/L. CalçadaWhen the jets are perpendicular to our view, we see a radio galaxy. If they’re at an angle, we see a quasar. And when we’re staring right down the barrel of the jet, that’s a blazar. It’s the same object, seen from three different perspectives.

Supermassive black holes aren’t always feeding. If a black hole runs out of food, the jets run out of power and shut down. Right up until something else gets too close, and the whole system starts up again.

The Milky Way has a supermassive black hole at its center, and it’s all out of food. It doesn’t have an active galactic nucleus, and so, we don’t appear as a quasar to some distant galaxy.

We may have in the past, and may again in the future. In 10 billion years or so, when the Milky way collides with Andromeda, our supermassive black hole may roar to life as a quasar, consuming all this new material.

If you’d like more information on Quasars, check out NASA’s Discussion on Quasars, and here’s a link to NASA’s Ask an Astrophysicist Page about Quasars.

We’ve also recorded an entire episode of Astronomy Cast all about Quasars Listen here, Episode 98: Quasars.

Sources: UT-Knoxville, NASA, Wikipedia

Earth’s Gold Came From Colliding Stars

Collisions of neutron stars produce powerful gamma-ray bursts – and heavy elements like gold (Credit: Dana Berry, SkyWorks Digital, Inc.)

Are you wearing a gold ring? Or perhaps gold-plated earrings? Maybe you have some gold fillings in your teeth… for that matter, the human body itself naturally contains gold — 0.000014%, to be exact! But regardless of where and how much of the precious yellow metal you may have with you at this very moment, it all ultimately came from the same place.

And no, I don’t mean Fort Knox, the jewelry store, or even under the ground — all the gold on Earth likely originated from violent collisions between neutron stars, billions of years in the past.

Recent research by scientists at the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Massachusetts has revealed that considerable amounts of gold — along with other heavy elements — are produced during impacts between neutron stars, the super-dense remains of stars originally 1.4 to 9 times the mass of our Sun.

The team’s investigation of a short-duration gamma-ray outburst that occurred in June (GRB 130603B) showed a surprising residual near-infrared glow, possibly from a cloud of material created during the stellar merger. This cloud is thought to contain a considerable amount of freshly-minted heavy elements, including gold.

“We estimate that the amount of gold produced and ejected during the merger of the two neutron stars may be as large as 10 moon masses – quite a lot of bling!” said lead author Edo Berger.

"With this remnant of a dead neutron star, I thee wed." (FreeDigitalPhotos.net/bigjom)
“With this remnant of a dead neutron star, I thee wed.” (FreeDigitalPhotos.net/bigjom)

The mass of the Moon is 7.347 x 1022 kg… about 1.2% the mass of Earth. The collision between these neutron stars then, 3.9 billion light-years away, produced 10 times that much gold based on the team’s estimates.

Quite a lot of bling, indeed.

Gamma-ray bursts come in two varieties – long and short – depending on the duration of the gamma-ray flash. GRB 130603B, detected by NASA’s Swift satellite on June 3rd, lasted for less than two-tenths of a second.

Although the gamma rays disappeared quickly, GRB 130603B also displayed a slowly fading glow dominated by infrared light. Its brightness and behavior didn’t match the typical “afterglow” created when a high-speed jet of particles slams into the surrounding environment.

Instead, the glow behaved like it came from exotic radioactive elements. The neutron-rich material ejected by colliding neutron stars can generate such elements, which then undergo radioactive decay, emitting a glow that’s dominated by infrared light – exactly what the team observed.

“We’ve been looking for a ‘smoking gun’ to link a short gamma-ray burst with a neutron star collision,” said Wen-fai Fong, a graduate student at CfA and a co-author of the paper. “The radioactive glow from GRB 130603B may be that smoking gun.”

The team calculates that about one-hundredth of a solar mass of material was ejected by the gamma-ray burst, some of which was gold. By combining the estimated gold produced by a single short GRB with the number of such explosions that have likely occurred over the entire age of the Universe, all the gold in the cosmos – and thus on Earth – may very well have come from such gamma-ray bursts.

Watch an animation of two colliding neutron stars along with the resulting GRB below (Credit: Dana Berry, SkyWorks Digital, Inc.):

How much gold is there on Earth, by the way? Since most of it lies deep inside Earth’s core and is thus unreachable, the total amount ever retrieved by humans over the course of history is surprisingly small: about 172,000 tonnes, or enough to make a cube 20.7 meters (68 feet) per side (based on the Thomson Reuters GFMS annual survey.) Some other estimates put this amount at slightly more or less, but the bottom line is that there really isn’t all that much gold available in Earth’s crust… which is partly what makes it (and other “precious” metals) so valuable.

And perhaps the knowledge that every single ounce of that gold was created by dead stars smashing together billions of years ago in some distant part of the Universe would add to that value.

“To paraphrase Carl Sagan, we are all star stuff, and our jewelry is colliding-star stuff,” Berger said.

The team’s findings were presented today in a press conference at the CfA in Cambridge. (See the paper here.)

Source: Harvard-Smithsonian CfA

A Galaxy Grows Fat on Nearby Gas

An artist’s impression showing a galaxy in the process of pulling in cool gas from its surroundings. (ESO/L. Calçada/ESA/AOES Medialab)

If you live in the U.S. you may be enjoying a sultry summer day off in honor of Independence Day, or at least have plans to get together with friends and family at some point to partake in some barbecued goodies and a favorite beverage (or three). And as you saunter around the picnic table scooping up platefuls of potato salad, cole slaw, and deviled eggs, you can also draw a correlation between your own steady accumulation of mayonnaise-marinated mass and a distant hungry galaxy located over 11 billion light-years away.

Astronomers have always suspected that galaxies grow by pulling in material from their surroundings, but this process has proved very difficult to observe directly. Now, ESO’s Very Large Telescope has been used to study a very rare alignment between a distant galaxy and an even more distant quasar — the extremely bright center of a galaxy powered by a supermassive black hole. The light from the quasar passes through the material around the foreground galaxy before reaching Earth, making it possible to explore in detail the properties of the in-falling gas and giving the best view so far of a galaxy in the act of feeding.

“This kind of alignment is very rare and it has allowed us to make unique observations,” said Nicolas Bouché of the Research Institute in Astrophysics and Planetology (IRAP) in Toulouse, France, lead author of the new paper. “We were able to use ESO’s Very Large Telescope to peer at both the galaxy itself and its surrounding gas. This meant we could attack an important problem in galaxy formation: how do galaxies grow and feed star formation?”

A beam from the Laser Star Guide on one of the VLT's four Unit Telescopes helps to correct the blurring effect of Earth's atmosphere before making observations (ESO/Y. Beletsky)
A beam from the Laser Star Guide on one of the VLT’s four Unit Telescopes helps to correct the blurring effect of Earth’s atmosphere before making observations (ESO/Y. Beletsky)

Galaxies quickly deplete their reservoirs of gas as they create new stars and so must somehow be continuously replenished with fresh gas to keep going. Astronomers suspected that the answer to this problem lay in the collection of cool gas from the surroundings by the gravitational pull of the galaxy. In this scenario, a galaxy drags gas inwards which then circles around it, rotating with it before falling in.

Although some evidence of such accretion had been observed in galaxies before, the motion of the gas and its other properties had not been fully explored up to now.

Astronomers have already found evidence of material around galaxies in the early Universe, but this is the first time that they have been able to show clearly that the material is moving inwards rather than outwards, and also to determine the composition of this fresh fuel for future generations of stars. And in this particular instance, without the quasar’s light to act as a probe the surrounding gas would be undetectable.

“In this case we were lucky that the quasar happened to be in just the right place for its light to pass through the infalling gas. The next generation of extremely large telescopes will enable studies with multiple sightlines per galaxy and provide a much more complete view,” concluded co-author Crystal Martin of the University of California Santa Barbara.

This research was presented in a paper entitled “Signatures of Cool Gas Fueling a Star-Forming Galaxy at Redshift 2.3”, to appear in the July 5, 2013 issue of the journal Science.

Source: ESO news release

An “Elemental” Explanation of Dark Matter

Image from Dark Universe, showing the distribution of dark matter in the universe. Credit: AMNH

Atoms, string theory, dark matter, dark energy… there’s an awful lot about the Universe that might make sense on paper (to physicists, anyway) but is extremely difficult to detect and measure, at least with the technology available today. But at the core of science is observation, and what’s been observed of the Universe so far strongly indicates an overwhelming amount of… stuff… that cannot be observed. But just because it can’t be seen doesn’t mean it’s not there; on the contrary, it’s what we can’t see that actually makes up the majority of the Universe.

If this doesn’t make sense, that’s okay — they’re all pretty complex concepts. So in order to help non-scientists (which, like dark energy, most of the population is comprised of) get a better grasp as to what all this “dark” stuff is about, CERN scientist and spokesperson James Gillies has teamed up with TED-Ed animators to visually explain some of the Universe’s darkest secrets. Check it out above (and see more space science lessons from TED-Ed here.)

Because everything’s easier to understand with animation!

Lesson by James Gillies, animation by TED-Ed.

Feeling Small in the Universe?

Well, you shouldn’t be. Yes, you’re just one person out of over 7 billion on Earth. Yes, your lifetime — even if you live to be well over 100 — is just a fraction of a flicker of a blink of a tardigrade’s eye (do tardigrades blink?) compared to the 4.6 billion years of the age of the planet. And yes, Earth is only about a third the age of the Universe… which is filled with billions of other galaxies each with stars and planets of their own. Space is just so awfully darn…big.

But, as astrophysicist Neil deGrasse Tyson reminds us in the video above, so are you. So is everyone, in fact. And why? Because we are all a part of it. We’re a part of the Universe… each one of us an inexorably inseparable part of the big picture, a connection between past, present, and future in the most elemental sense possible. As Tyson famously stated once before, “we are in the Universe, the Universe is in us.” And it’s true.

So if you have an admittedly large and heavy ego, put it down for a moment and check out the video. You may come to realize it was weighing you down a bit.

“Those who see the cosmic perspective as a depressing outlook, they really need to reassess how they think about the world.”

– Neil deGrasse Tyson

Video: Big Think

A Mega-Merger of Massive Galaxies Caught in the Act

A rare and massive merging of two galaxies that took place when the Universe was just 3 billion years old.

Even though the spacecraft has exhausted its supply of liquid helium coolant necessary to observe the infrared energy of the distant Universe, data collected by ESA’s Herschel space observatory are still helping unravel cosmic mysteries — such as how early elliptical galaxies grew so large so quickly, filling up with stars and then, rather suddenly, shutting down star formation altogether.

Now, using information initially gathered by Herschel and then investigating closer with several other space- and ground-based observatories, researchers have found a “missing link” in the evolution of early ellipticals: an enormous star-sparking merging of two massive galaxies, caught in the act when the Universe was but 3 billion years old.

It’s been a long-standing cosmological conundrum: how did massive galaxies form in the early Universe? Observations of distant large elliptical galaxies full of old red stars (and few bright, young ones) existing when the Universe was only a few billion years old just doesn’t line up with how such galaxies were once thought to form — namely, through the gradual accumulation of many smaller dwarf galaxies.

But such a process would take time — much longer than a few billion years. So another suggestion is that massive elliptical galaxies could have been formed by the collision and merging of large galaxies, each full of gas, dust, and new stars… and that the merger would spark a frenzied formation of even more stars.

Investigation of a bright region first found by Herschel, named HXMM01, has identified such a merger of two galaxies, 11 billion light-years distant.

The enormous galaxies are linked by a bridge of gas and each has a stellar mass of about 100 billion Suns — and they are spawning new stars at the incredible rate of about 2,000 a year.

“We’re looking at a younger phase in the life of these galaxies — an adolescent burst of activity that won’t last very long,” said Hai Fu of the University of California at Irvine, lead author of a new study describing the results.

ESA's Herschel telescope used liquid helium to keep cool while it observed heat from the early Universe
ESA’s Herschel telescope used liquid helium to keep cool while it observed heat from the early Universe
Hidden behind vast clouds of cosmic dust, it took the heat-seeking eyes of Herschel to even spot HXMM01.

“These merging galaxies are bursting with new stars and completely hidden by dust,” said co-author Asantha Cooray, also of the University of California at Irvine. “Without Herschel’s far-infrared detectors, we wouldn’t have been able to see through the dust to the action taking place behind.”

Herschel first spotted the colliding duo in images taken with longer-wavelength infrared light, as shown in the image above on the left side. Follow-up observations from many other telescopes helped determine the extreme degree of star-formation taking place in the merger, as well as its incredible mass.

The image at right shows a close-up view, with the merging galaxies circled. The red data are from the Smithsonian Astrophysical Observatory’s Submillimeter Array atop Mauna Kea, Hawaii, and show dust-enshrouded regions of star formation. The green data, taken by the National Radio Astronomy Observatory’s Very Large Array, near Socorro, N.M., show carbon monoxide gas in the galaxies. In addition, the blue shows starlight.

Although the galaxies in HXMM01 are producing thousands more new stars each year than our own Milky Way does, such a high star-formation rate is not sustainable. The gas reservoir contained in the system will be quickly exhausted, quenching further star formation and leading to an aging population of low-mass, cool, red stars — effectively “switching off” star formation, like what’s been witnessed in other early ellipticals.

Dr. Fu and his team estimate that it will take about 200 million years to convert all the gas into stars, with the merging process completed within a billion years. The final product will be a massive red and dead elliptical galaxy of about 400 billion solar masses.

The study is published in the May 22 online issue of Nature.

Read more on the ESA Herschel news release here, as well as on the NASA site here. Also, check out an animation of the galactic merger below:

Main image credit: ESA/NASA/JPL-Caltech/UC Irvine/STScI/Keck/NRAO/SAO

Researchers May Have Finally Detected a Dark Matter Particle

The international Super Cryogenic Dark Matter Search (SuperCDMS) has detected what may be the particle that's thought to make up dark matter throughout the Universe.

Dark matter: it’s invisible, it’s elusive, it’s controversial… and it’s everywhere — in the Universe, yes, but especially in the world of astrophysics, where researchers have been exhaustively trying to reveal its true identity for decades.

Now, scientists with the international Super Cryogenic Dark Matter Search (SuperCDMS) experiment are reporting the detection of a particle that’s thought to make up dark matter: a weakly-interacting massive particle, or WIMP. According to a press release from Texas A&M University (whose high-energy physicist Rupak Mahapatra is a principal investigator in the experiment) SuperCDMS has identified a WIMP-like signal at the 3-sigma level, which indicates a 99.8 percent chance of an actual discovery — a “concrete hint,” as it’s being called.

“In high-energy physics, a discovery is only claimed at 5-sigma or better,” Mahapatra said. “So this is certainly very exciting, but not fully convincing by the standards. We just need more data to be sure. For now, we have to live with this tantalizing hint of one of the biggest puzzles of our time.”

If this is indeed a WIMP it will be the first time such a particle has been directly observed, lending more insight into what dark matter is… or isn’t.

Notoriously elusive, WIMPs rarely interact with normal matter and therefore are difficult to detect. Scientists believe they occasionally bounce off, or scatter like billiard balls from, atomic nuclei, leaving behind a small amount of energy capable of being tracked by detectors deep underground, particle colliders such as the Large Hadron Collider at CERN and even instruments in space like the Alpha Magnetic Spectrometer (AMS) mounted on the International Space Station.

A stack of crystal germanium CDMS detectors (Fermilab)
A stack of crystal germanium CDMS detectors (Fermilab)

The CDMS experiment, located a half-mile underground at the Soudan mine in northern Minnesota and managed by the United States Department of Energy’s Fermi National Accelerator Laboratory, has been searching for dark matter since 2003. The experiment uses very sophisticated detector technology and advanced analysis techniques to enable cryogenically cooled (almost absolute zero temperature at -460 degrees F) germanium and silicon targets to search for the rare recoil of dark matter particles.

This newly-announced detection actually comes from data acquired during an earlier phase of the experiment.

“This result is from data taken a few years ago using silicon detectors manufactured at Stanford that are now defunct,” Mahapatra said. “Increased interest in the low mass WIMP region motivated us to complete the analysis of the silicon-detector exposure, which is less sensitive than germanium for WIMP masses above 15 giga-electronvolts [one GeVa is equal to a billion electron volts] but more sensitive for lower masses. The analysis resulted in three events, and the estimated background is 0.7 events.”

Although Mahapatra says the result is certainly encouraging and worthy of further investigation, he cautions it should not be considered a discovery just yet.

“We are only 99.8 percent sure, and we want to be 99.9999 percent sure,” Mahapatra said. “At 3-sigma, you have a hint of something. At 4-sigma, you have evidence. At 5-sigma, you have a discovery.”

“In medicine, you can say you are curing 99.8 percent of the cases, and that’s OK. When you say you’ve made a fundamental discovery in high-energy physics, you can’t be wrong.”

– Dr. Rupak Mahapatra, SuperCDMS principal investigator, Texas A&M University

Advanced 6-inch silicon detectors developed by Mahapatra's lab at Texas A&M
Advanced 6-inch silicon detectors developed by Mahapatra’s lab at Texas A&M

The collaboration will continue to probe this WIMP sector using the SuperCDMS Soudan experiment’s operating germanium detectors and is considering using larger, more advanced 6-inch silicon detectors developed at the Texas A&M’s Department of Electrical Engineering in future experiments.

The team has detailed its results in a paper published in arXiv that eventually will appear in Physical Review Letters. Mahapatra will also announce the results today at 12 p.m. CDT in a talk at the Mitchell Institute for Fundamental Physics and Astronomy.

Source: Texas A&M University

(Read more about dark matter here and here.)

Do We Really Need Dark Matter?

Hubble mosaic of massive galaxy cluster MACS J0717.5+3745, thought to be connected by a filament of dark matter. Credit: NASA, ESA, Harald Ebeling (University of Hawaii at Manoa) & Jean-Paul Kneib (LAM)

Even though teams of scientists around the world are at this very moment hot on the trail of dark matter — the “other stuff” that the Universe is made of and supposedly accounts for nearly 80% of the mass that we can’t directly observe (yet) —  and trying to quantify exactly how so-called “dark energy” drives its ever-accelerating expansion, perhaps one answer to these ongoing mysteries is maybe they don’t exist at all.

This is precisely what one astronomer is suggesting in a recent paper, submitted Dec. 3 to Astrophysical Journal Letters.

In a paper titled “An expanding universe without dark matter and dark energy” (arXiv:1212.1110) Pierre Magain, a professor at Belgium’s Institut d’Astrophysique et de Géophysique, proposes that the expansion of the Universe could be explained without the need for enigmatic material and energy that, to date, has yet to be directly measured.

In addition, Magain’s proposal puts a higher age to the Universe than what’s currently accepted. With a model that shows a slower expansion rate during the early Universe than today, Magain’s calculations estimate its age to be closer to 15.4 – 16.5 billion years old, adding a couple billion more candles to the cosmic birthday cake.

The benefit to a slightly older Universe, Magain posits, is that it’s not so uncannily close to the apparent age of the most distant galaxies recently found — such as MACS0647-JD, which is 13.3 billion light-years away and thus (based on current estimates, see graphic at right) must have formed when the Universe was a mere 420 million years old.

Read more: Now Even Further: Ancient Galaxy is Latest Candidate for Most Distant

Using accepted physics of how time behaves based on Einstein’s theory of general relativity — namely, how the passage of time is relative to the position and velocity of the viewer (as well as the intensity of the gravitational field the viewer is within) — Magain’s model allows for an observer located within the Universe to potentially be experiencing a different rate of time than a hypothetical viewer located outside the Universe. Not to be so metaphysical as to presume that there are external observers of our Universe but merely to say that an external point would be a fixed one against which one could benchmark a varying passage of time inside the Universe, Magain calls this universal relativity.

A viewer experiencing universal relativity would, Magain claims, always measure the curvature of the Universe to be equal to zero. This is what’s currently observed, a “flatness problem” that Magain insinuates is strangely coincidental.

By attributing an expanding Universe to dark energy and the high velocities of stars along the edges of galaxies (as well as the motions of galaxy clusters themselves) to dark matter, we may be introducing ad hoc elements to the Universe, says Magain. Instead, he proposes his “more economical” model — which uses universal relativity — explains these apparently accelerating, increasingly expanding behaviors… and gives a bigger margin of time between the Big Bang and the formation of the first galactic structures.

Read more: First Images in a New Hunt for Dark Energy

There’s quite a bit of math involved, and since I never claimed to understand physics equations you can check out the original paper here.

While intriguing, the bottom line is that dark energy and dark matter have still managed to elude science, existing just outside the borders of what can be observed (although the gravitational lensing effects of what’s thought to be dark matter filaments have been observed by Hubble) and Magain’s paper is merely putting another idea onto the table — one that, while he recognizes needs further testing and relies upon very specific singular parameters, doesn’t depend upon invisible, unobservable and mysteriously dark “stuff”. Whether it belongs on the table or not will be up to other astrophysicists to decide.

Prof. Magain’s research was supported by ESA and the Belgian Science Policy Office.

At right: Artist’s impression of dark matter (h/t to Steve Nerlich)

Note: this is “just” a submitted paper and has not been selected for publication yet. Any hypotheses proposed are those of the author and are not endorsed by this site. (Personally I like dark matter. It’s fascinating stuff… even if we can’t see it. Want an astrophysicist’s viewpoint on the existence of dark matter? Check out Ethan Siegel’s blog response here.)

The Brightest Galaxies in the Universe Were Invisible… Until Now

Hubble images of six of the starburst galaxies first found by ESA’s Herschel Space Observatory (Keck data shown below each in blue)

Many of the brightest, most actively star-forming galaxies in the Universe were actually undetectable by Earth-based observatories, hidden from view by thick clouds of opaque dust and gas. Thanks to ESA’s Herschel space observatory, which views the Universe in infrared, an enormous amount of these “starburst” galaxies have recently been uncovered, allowing astronomers to measure their distances with the twin telescopes of Hawaii’s W.M. Keck Observatory. What they found is quite surprising: at least 767 previously unknown galaxies, many of them generating new stars at incredible rates.

Although nearly invisible at optical wavelengths these newly-found galaxies shine brightly in far-infrared, making them visible to Herschel, which can peer through even the densest dust clouds. Once astronomers knew where the galaxies are located, they were able to target them with Hubble and, most importantly, the two 10-meter Keck telescopes — the two largest optical telescopes in the world.

By gathering literally hundreds of hours of spectral data on the galaxies with the Keck telescopes, estimates of their distances could be determined as well as their temperatures and how often new stars are born within them.

“While some of the galaxies are nearby, most are very distant; we even found galaxies that are so far that their light has taken 12 billion years to travel here, so we are seeing them when the Universe was only a ninth of its current age,” said Dr. Caitlin Casey, Hubble fellow at the UH Manoa Institute for Astronomy and lead scientist on the survey. “Now that we have a pretty good idea of how important this type of galaxy is in forming huge numbers of stars in the Universe, the next step is to figure out why and how they formed.”

A representation of the distribution of nearly 300 starbursts in one 1.4 x 1.4 degree field of view.

The galaxies, many of them observed as they were during the early stages of their formation, are producing new stars at a rate of 100 to 500 a year — with a mass equivalent of several thousand Suns — hence the moniker “starburst” galaxy. By comparison the Milky Way galaxy only births one or two Sun-mass stars per year.

The reason behind this explosion of star formation in these galaxies is unknown, but it’s thought that collisions between young galaxies may be the cause.

Another possibility is that galaxies had much more gas and dust during the early Universe, allowing for much higher star formation rates than what’s seen today.

“It’s a hotly debated topic that requires details on the shape and rotation of the galaxies before it can be resolved,” said Dr. Casey.

Still, the discovery of these “hidden” galaxies is a major step forward in understanding the evolution of star formation in the Universe.

“Our study confirms the importance of starburst galaxies in the cosmic history of star formation. Models that try to reproduce the formation and evolution of galaxies will have to take these results into account.”

– Dr. Caitlin Casey, Hubble fellow at the UH Manoa Institute for Astronomy

“For the first time, we have been able to measure distances, star formation rates, and temperatures for a brand new set of 767 previously unidentified galaxies,” said Dr. Scott Chapman, a co-author on the studies. “The previous similar survey of distant infrared starbursts only covered 73 galaxies. This is a huge improvement.”

The papers detailing the results were published today online in the Astrophysical Journal.

Sources: W.M. Keck Observatory article and ESA’s news release.

Image credits: ESA–C. Carreau/C. Casey (University of Hawai’i); COSMOS field: ESA/Herschel/SPIRE/HerMES Key Programme; Hubble images: NASA, ESA. Inset image courtesy W. M. Keck Observatory.