The magnetic fields of Uranus and Neptune are really, seriously messed up. And we don’t know why.
Continue reading “Both Uranus and Neptune Have Really Bizarre Magnetic Fields”Uranus X-Rays are Probably Reflected Sunlight, but There Could be Another Source as Well
X-rays offer a unique insight into the astronomical world. Invisible to the naked eye, most commonly they are thought of as the semi-dangerous source of medical scans. However, X-ray observatories, like the Chandra X-ray Observatory are capable of seeing astronomical features that no other telescope can. Recently scientists found some of those X-rays coming from a relatively unexpected source – Uranus.
Continue reading “Uranus X-Rays are Probably Reflected Sunlight, but There Could be Another Source as Well”Uranus’ Moons are Surprisingly Similar to Dwarf Planets in the Kuiper Belt
Astronomer William Herschel discovered Uranus—and two of its moons—230 years ago. Now a group of astronomers working with data from the telescope that bears his name, the Herschel Space Observatory, have made an unexpected discovery. It looks like Uranus’ moons bear a striking similarity to icy dwarf planets.
The Herschel Space Observatory has been retired since 2013. But all of its data is still of interest to researchers. This discovery was a happy accident, resulting from tests on data from the observatory’s camera detector. Uranus is a very bright infrared energy source, and the team was measuring the influence of very bright infrared objects on the camera.
The images of the moons were discovered by accident.
Continue reading “Uranus’ Moons are Surprisingly Similar to Dwarf Planets in the Kuiper Belt”The Moons of Uranus Are Fascinating Enough On Their Own That We Should Send a Flagship Mission Out There
What’s the most interesting fact you know about Uranus? The fact that its rotational axis is completely out of line with every other planet in the solar system? Or the fact that Uranus’ magnetosphere is asymmetrical, notably tilted relative to its rotational axis, and significantly offset from the center of the planet? Or the fact that it’s moons are all named after characters from Shakespeare or Alexander Pope?
All of those facts (with the exception of the literary references) have come from a very limited dataset. Some of the best data was collected during a Voyager 2 flyby in 1986. Since then, the only new data has come from Earth-based telescopes. While they’ve been steadily increasing in resolution, they have only been able to scratch the surface of what may be lurking in the system surrounding the closest Ice Giant. Hopefully that is about to change, as a team of scientists has published a white paper advocating for a visit from a new Flagship class spacecraft.
Continue reading “The Moons of Uranus Are Fascinating Enough On Their Own That We Should Send a Flagship Mission Out There”A Simulation of Sunsets on Other Worlds: From Venus to Titan
When we think of exploring other planets and celestial bodies, we tend to focus on the big questions. How would astronauts live there when they’re not working? What kind of strategies and technology would be needed for people to be there long term? How might the gravity, environment, and radiation effect humans who choose to make places like the Moon, Mars, and other bodies place their home? We tend to overlook the simple stuff…
For example, what will it be like to look up at the sky? How will Earth, the stars, and any moon in orbit appear? And how will it look to watch the sun go down? These are things we take for granted here on Earth and don’t really ponder much. But thanks to NASA, we now have a tool that simulates what sunsets would look like from other bodies in the Solar System – from the hellish surface of Venus to the dense atmosphere of Uranus.
Continue reading “A Simulation of Sunsets on Other Worlds: From Venus to Titan”New Find Shows Uranus Loses Atmosphere to its Magnetic Field
You may never look at Uranus the same way again. It’s always worth combing through data from old space missions for new finds.
NASA’s researchers at the Goddard Space Flight Center recently did just that, looking at Voyager 2’s lone encounter with the planet Uranus to uncover an amazing find, as the planet seems to be losing its atmosphere to it’s lop-sided magnetic field at a high rate. The finding was published in a recent edition of Geophysical Research: Letters.
Continue reading “New Find Shows Uranus Loses Atmosphere to its Magnetic Field”Uranus’ Rings are Surprisingly Bright in Thermal Emissions
During the late 1970s, scientists made a rather interesting discovery about the gas giants of the Solar System. Thanks to ongoing observations using improved optics, it was revealed that gas giants like Uranus – and not just Saturn – have ring systems about them. The main difference is, these ring systems are not easily visible from a distance using conventional optics and require exceptional timing to see light being reflected off of them.
Another way to study them is to observe their planet in infrared or radio wavelengths. This was recently demonstrated by a team of astronomers who conducted observations of Uranus using the Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Telescope (VLT). In addition to obtaining temperature readings from the rings, they confirmed what many scientists have suspected about them for some time.
Continue reading “Uranus’ Rings are Surprisingly Bright in Thermal Emissions”Hubble Shows off the Atmospheres of Uranus and Neptune
Like Earth, Uranus and Neptune have season and experience changes in weather patterns as a result. But unlike Earth, the seasons on these planets last for years rather than months, and weather patterns occur on a scale that is unimaginable by Earth standards. A good example is the storms that have been observed in Neptune and Uranus’ atmosphere, which include Neptune’s famous Great Dark Spot.
During its yearly routine of monitoring Uranus and Neptune, NASA’s Hubble Space Telescope (HST) recently provided updated observations of both planets’ weather patterns. In addition to spotting a new and mysterious storm on Neptune, Hubble provided a fresh look at a long-lived storm around Uranus’ north pole. These observations are part of Hubble‘s long-term mission to improve our understanding of the outer planets.
Continue reading “Hubble Shows off the Atmospheres of Uranus and Neptune”Something Twice the Size of Earth Slammed into Uranus and Knocked it Over on its Side
Astronomers think they know how Uranus got flipped onto its side. According to detailed computer simulations, a body about twice the size of Earth slammed into Uranus between 3 to 4 billion years ago. The impact created an oddity in our Solar System: the only planet that rotates on its side.
A study explaining these findings was presented at the American Geophysical Union’s (AGU) Fall Meeting in Washington DC held between December 10th to 14th. It’s led by Jacob Kegerreis, a researcher at Durham University. It builds on previous studies pointing to an impact as the cause of Uranus’ unique orientation. Taken altogether, we’re getting a clearer picture of why Uranus rotates on its side compared to the other planets in our Solar System. The impact also explains why Uranus is unique in other ways.
Continue reading “Something Twice the Size of Earth Slammed into Uranus and Knocked it Over on its Side”
New Insights Into What Might Have Smashed Uranus Over Onto its Side
The gas/ice giant Uranus has long been a source of mystery to astronomers. In addition to presenting some thermal anomalies and a magnetic field that is off-center, the planet is also unique in that it is the only one in the Solar System to rotate on its side. With an axial tilt of 98°, the planet experiences radical seasons and a day-night cycle at the poles where a single day and night last 42 years each.
Thanks to a new study led by researchers from Durham University, the reason for these mysteries may finally have been found. With the help of NASA researchers and multiple scientific organizations, the team conducted simulations that indicated how Uranus may have suffered a massive impact in its past. Not only would this account for the planet’s extreme tilt and magnetic field, it would also explain why the planet’s outer atmosphere is so cold.
Continue reading “New Insights Into What Might Have Smashed Uranus Over Onto its Side”