On February 19th, 2019, the US Space Force (USSF) was officially created with the signing of Space Policy Directive–4. This effectively broke off from the US Air Force Space Command (AFSC) and made into the sixth and youngest independent branch of the armed forces. Since then, the USSF has established a headquarters, taken on staff from the US Air Force, and even produced a recruitment video!
In their latest announcement, the US Space Force stated that it will begin training soon to develop their staff’s “space warfighting skills.” This will include training personnel to specialize in orbital warfare, electronic warfare, military strategy, and others. The immediate aim is to produce personnel who can control US space infrastructure and protect it from physical, electronic, or digital attacks.
The X-37B, the US Air Force’s experimental, Orbital Test Vehicle (OTV) has come back down to Earth after 780 days. It landed at the Kennedy Space Center Shuttle Landing Facility on Oct. 27, 2019, at 3:51 a.m. after breaking its own record for time in space. The X-37B has now spent 2,865 total days in orbit.
Ever since it started taking to space, there has been a lot of mystery and controversy surrounding the USAF’s X-37B space plane. Despite the fact that this militarized-version of NASA’s orbital vehicle has conducted several spaceflights since its first in 2010, we still have no idea what its true purpose is. But so far, the smart money appears to be on it being an advanced spy plane.
Hoping to gather clues to this question, skywatcher and satellite tracker Ralf Vandebergh of the Netherlands has spent the past few months hunting for this space plane in the night sky. Recently, he was fortunate enough to not only locate the elusive X-37B in the sky but also managed to snap some photographs of it. Given its diminutive size and secretive-nature, this was no small feat!
CAPE CANAVERAL AIR FORCE STATION, FL – The most powerful US Air Force military communications satellite ever built was propelled to orbit by a ULA Delta IV rocket that provided a dinnertime launch delight Wednesday evening for the crowds of spectators gathered around America’s premier gateway to space.
Check out this expanding gallery of launch photos and videos from several space journalist colleagues and friends and myself- spread throughout the Florida Space Coast region – giving a comprehensive look as the Wideband Global SATCOM (WGS-8) mission streaked to orbit atop a United Launch Alliance Delta IV rocket from Space Launch Complex 37 (SLC-37) on Cape Canaveral Air Force Station at 6:53 p.m. EST on Dec. 7, 2016.
The United Launch Alliance Delta IV Medium+ rocket successfully streaked to the heavens through nearly crystal clear skies to deliver WGS-8 to a supersynchronous transfer orbit.
Spectators were rewarded with a picture perfect view of the rocket as it ascended quickly and arced over to the African continent.
WGS-8 is the first in a newly upgraded series of a trio of WGS satellites built by Boeing that will nearly double the communications bandwidth of prior WGS models.
Watch this video compilation showing the launch from several different vantage points.
Video Caption: A collage of up-close video cameras ringed around Space launch Complex 37 capture Delta 4 launch of the WGS-8 satellite on 12/7/2016 from Pad 37 of the CCAFS, FL. Credit: Jeff Seibert
WGS-8 is the first of three launches from the Cape this December. A Pegasus XL rocket will launch on Dec. 12 carrying NASA’s CGYNSS hurricane monitoring satellites. And an Atlas V will launch on Dec. 18 with the EchoStar 19 comsat.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
CAPE CANAVERAL AIR FORCE STATION, FL – Less than 24 hours from now the evening skies along the Florida Space Coast will light up with a spectacular burst of fire and fury as a Delta rocket roars to space with a super advanced tactical satcom for the U.S. Air Force that will provide a huge increase in communications bandwidth for American forces around the globe.
Blastoff of the Wideband Global SATCOM (WGS-8) mission for the U.S. Air Force is slated for 6:53 p.m. EST on Wednesday, Dec. 7, 2016 from Space Launch Complex-37 at Cape Canaveral Air Force Station, Florida.
WGS-8 will be delivered to a supersynchronous transfer orbit atop a United Launch Alliance Delta IV Medium+ rocket. The launch window runs for 49 minutes from 6:53-7:42 p.m. EST.
You can watch the Delta launch live on a ULA webcast. The live launch broadcast will begin at 6:33 p.m. EST here:
http://www.ulalaunch.com/webcast.aspx
The weather forecast for Wednesday Dec. 6, calls for an 80 percent chance of acceptable weather conditions at launch time.
In case of a scrub for any reason the chances for a favorable launch drop slightly to 60% GO.
WGS-8 is the first in a newly upgraded series of a trio of WGS satellites built by Boeing.
The major upgrade is inclusion of the Wideband Digital Channelizer, awarded to Boeing in June 2012.
The Wideband Digital Channelizer will provide a 90 percent improvement in satellite bandwidth for US forces.
It is also the only military satellite communications system that can support simultaneous X and Ka band communications.
WGS-8 can instantaneously filter and downlink up to 8.088 GHz of bandwidth compared to 4.410 GHz for the earlier Block I and II satellite series.
The prior Wideband Global SATCOM-7 (WGS-7) communications satellite was launched on July 23, 2015 from Space Launch Complex-37.
The Wideband Global SATCOM system provides “anytime, anywhere communication” for allied military forces “through broadcast, multicast and point to point connections,” according to ULA.
The $426 million WGS 8 satellite is part of a significant upgraded constellation of high capacity communications satellites providing enhanced communications capabilities to American and allied troops in the field for the coming two decades.
“WGS provides essential communications services, allowing Combatant Commanders to exert command and control of their tactical forces, from peace time to military operations.”
WGS-8 is the eighth in a series of high capacity communication satellites that will broaden tactical communications for U.S. and allied forces at both a significantly higher capacity and lower cost.
“WGS satellites are important elements of a high-capacity satellite communications system providing enhanced communications capabilities to America’s troops in the field for the next decade and beyond,” according to a ULA factsheet.
“WGS enables more robust and flexible execution of Command and Control, Communications Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR), as well as battle management and combat support information functions. The WGS constellation augments the existing service available through the UHF Follow-on satellite by providing enhanced information broadcast capabilities.”
The 217 foot tall Delta IV Medium+ rocket will launch in the 5,4 configuration with a 5 meter diameter payload fairing and 4 solid rocket boosters to augment the first stage.
The is the sixth flight in the Medium+ (5,4) configuration; all of which were for prior WGS missions.
WGS-8 also counts as the first of three launches from the Cape this December. A Pegasus XL rocket will launch on Dec. 12 carrying NASA’s CGYNSS hurricane monitoring satellites. And an Atlas V will launch on Dec. 12 with the EchoStar 23 comsat.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Musk further indicated in the Nov. 4 interview with CNBC that they have discovered the problem that suddenly triggered the catastrophic Falcon 9 launch pad explosion that suddenly destroyed the rocket and $200 million Israeli Amos-6 commercial payload during a routine fueling and planned static fire engine test on Sept. 1.
“I think we’ve gotten to the bottom of the problem,” Musk said. “It was a really surprising problem. It’s never been encountered before in the history of rocketry.”
Musk said the issue related to some type of interaction between the liquid helium bottles , carbon composites and solidification of the liquid oxygen propellant in the SpaceX Falcon 9 second stage.
“It basically involves a combination of liquid helium, advanced carbon fiber composites, and solid oxygen, Musk elaborated.
“Oxygen so cold that it enters the solid phase.”
“Turning out to be the most difficult and complex failure we have ever had in 14 years,” Musk previously tweeted on Sept. 9.
“It’s never happened before in history. So that’s why it took us awhile to sort it out,” Musk told CNBC on Nov. 4.
The explosion took place without warning as liquid oxygen and RP-1 propellants were being loaded into the second stage of the 229-foot-tall (70-meter) Falcon 9 during a routine fueling test and engine firing test at SpaceX’s Space Launch Complex-40 launch facility at approximately 9:07 a.m. EDT on Sept. 1 on Cape Canaveral Air Force Station, Fl.
But the rocket blew up during the fueling operations and the SpaceX launch team never even got to the point of igniting the first stage engines for the static fire test.
Launch of the AMOS-6 comsat from pad 40 had been scheduled to take place two days later.
In company updates posted to the SpaceX website on Sept. 23 and Oct 28, the company said the anomaly appears to be with a “large breach” in the cryogenic helium system of the second stage liquid oxygen tank – but that the root cause had not yet been determined.
“The root cause of the breach has not yet been confirmed, but attention has continued to narrow to one of the three composite overwrapped pressure vessels (COPVs) inside the LOX tank.”
“Through extensive testing in Texas, SpaceX has shown that it can re-create a COPV failure entirely through helium loading conditions.”
The helium loading is “mainly affected by the temperature and pressure of the helium being loaded.”
“This was the toughest puzzle to solve that we’ve ever had to solve,”Musk explained to CNBC.
After the Sept. 1 accident, SpaceX initiated a joint investigation to determine the root cause with the FAA, NASA, the US Air Force and industry experts who have been “working methodically through an extensive fault tree to investigate all plausible causes.”
“We have been working closely with NASA, and the FAA [Federal Aviation Administration] and our commercial customers to understand it,” says Musk.
Musk was not asked and did not say from which launch pad the Falcon 9 would launch or what the payload would be.
“It looks like we’re going to be back to launching around mid-December,” he replied.
SpaceX maintains launch pads on both the US East and West coasts.
“Pending the results of the investigation, we continue to work towards returning to flight before the end of the year. Our launch sites at Kennedy Space Center, Florida, and Vandenberg Air Force Base, California, remain on track to be operational in this timeframe,” SpaceX said on Oct 28.
At KSC launches will initially take place from pad 39A, the former shuttle pad that SpaceX has leased from NASA.
Pad 40 is out of action until extensive repairs and testing are completed.
The Sept. 1 calamity was the second Falcon 9 failure within 15 months time and will call into question the rockets overall reliability.
The first Falcon 9 failure involved a catastrophic mid air explosion in the second stage about two and a half minutes after liftoff, during the Dragon CRS-9 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.
Although both incidents involved the second stage, SpaceX maintains that they are unrelated – even as they continue seeking to determine the root cause.
SpaceX must determine the root cause before Falcon 9 launches are allowed to resume. Effective fixes must be identified and effective remedies must be verified and implemented.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Solar wind – that is, the stream of charged electrons and protons that are released from the upper atmosphere of the Sun – is a constant in our Solar System and generally not a concern for us Earthlings. However, on occasion a solar wind shock wave or Coronal Mass Ejection can occur, disrupting satellites, electronics systems, and even sending harmful radiation to the surface.
Little wonder then why NASA and the National Oceanic and Atmospheric Administration (NOAA) have made a point of keeping satellites in orbit that can maintain real-time monitoring capabilities. The newest mission, the Deep Space Climate Observatory (DSCOVR) is expected to launch later this month.
A collaborative effort between NASA, the NOAA, and the US Air Force, the DSCOVR mission was originally proposed in 1998 as a way of providing near-continuous monitoring of Earth. However, the $100 million satellite has since been re-purposed as a solar observatory.
In this capacity, it will provide support to the National Weather Service’s Space Weather Prediction Center, which is charged with providing advanced warning forecasts of approaching geomagnetic storms for people here on Earth.
These storms, which are caused by large-scale fluctuations in solar wind, have the potential of disrupting radio signals and electronic systems, which means that everything from telecommunications, aviation, GPS systems, power grids, and every other major bit of infrastructure is vulnerable to them.
In fact, a report made by the National Research Council estimated that recovering from the most extreme geomagnetic storms could take up to a decade, and cost taxpayers in the vicinity of $1 to $2 trillion dollars. Add to the that the potential for radiation poisoning to human beings (at ground level and in orbit), as well as flora and fauna, and the need for alerts becomes clear.
Originally, the satellite was scheduled to be launched into space on Jan. 23rd from the Cape Canaveral Air Force Station, Florida. However, delays in the latest resupply mission to the International Space Station have apparently pushed the date of this launch back as well.
According to a source who spoke to SpaceNews, the delay of the ISS resupply mission caused scheduling pressure, as both launches are being serviced by SpaceX from Cape Canaveral. However, the same source indicated that there are no technical problems with the satellite or the Falcon 9 that will be carrying it into orbit. It is now expected to be launched on Jan. 29th at the latest.
Once deployed, DSCOVR will eventually take over from NASA’s aging Advanced Composition Explorer (ACE) satellite, which has been in providing solar wind alerts since 1997 and is expected to remain in operation until 2024. Like ACE, the DSCOVER will orbit Earth at Lagrange 1 Point (L1), the neutral gravity point between the Earth and sun approximately 1.5 million km (930,000 mi) from Earth.
From this position, DSCOVR will be able to provide advanced warning, roughly 15 to 60 minutes before a solar wind shockwave or CME reaches Earth. This information will be essential to emergency preparedness efforts, and the data provided will also help improve predictions as to where a geomagnetic storm will impact the most.
These sorts of warnings are essential to maintaining the safety and integrity of infrastructure, but also the health and well-being of people here on Earth. Given our dependence on high-tech navigation systems, electricity, the internet, and telecommunications, a massive geomagnetic storm is not something we want to get caught off guard by!
And be sure to check out this video of the DSCOVR mission, courtesy of the NOAA:
United Launch Alliance Atlas V rocket – powered by Russian made RD-180 engines – and Super Secret NROL-67 intelligence gathering payload poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, in March 2014. Credit: Ken Kremer – kenkremer.com
Story updated[/caption]
A US Federal Court has now issued a preliminary injunction that blocks the purchase and importation of Russian rocket engines by United Launch Alliance (ULA) for its Atlas V rocket used in National Security launches for the US Air Force after a filing by SpaceX. But what are the implications?
The US Federal Court of Federal Claims order was issued late Wednesday, April 30, by US Judge Susan G. Braden of the US Court of Federal Claims. The court order is in response to a protest filed by SpaceX against ULA and the US Air Force relating to the uncontested $11 Billion “block buy” launch contract purchase in December of 36 rocket cores for US National Security launches and is also related to US sanctions imposed after Russia’s recent actions in Ukraine and seizing and annexing the Crimea.
The temporary injunction marks a big win for SpaceX but immediately throws future National Security spy satellite and NASA science launches into uncertainty and potential disarray as I reported previously – here and here.
As I posted here last Friday, April 25, SpaceX CEO Elon Musk declared his firms intent to file suit against ULA and the Air Force on Monday, April 28 to break the launch monopoly.
Judge Braden’s injunction followed barely two days later.
Musk said the recent ‘block buy’ launch contract was unfair in blocking SpaceX from competing for launches of surveillance satellites, would cost taxpayers billions of extra dollars in coming years and should be recompetited.
“The national security launches should be put up for competition and they should not be awarded on a sole source, uncompeted basis,” Musk said at the April 25 briefing at the National Press Club in Washington, DC.
ULA quickly vowed today that they will respond to resolve the injunction and further stated that “This opportunistic action by SpaceX … ignores the potential implications to our National Security.”
Federal Judge Braden’s order specifically states the following; “The preliminary injunction prohibits the United States Air Force and United Launch Alliance, from making any purchases from or payment of money to NPO Energomash or any entity, whether governmental, corporate or individual, that is subject to the control of Deputy Prime Minister Rogozin.”
“IT IS SO ORDERED,” wrote Braden.
The engines at the heart of the Federal preliminary injunction are the RD-180 liquid fueled engines which power ULA’s Atlas V rocket and are manufactured in Russia by NPO Energomash – which is majority state owned by the Russian Federation and subject to the control of Russian Deputy Prime Minister Rogozin, who is specifically named on the US economic sanctions target list.
In response, Rogozin said that sanctions could “boomerang” against the US space program. He said that perhaps NASA should “deliver their astronauts to the International Space Station using a trampoline.”
Thanks to the utter folly of US politicians in shutting down the Space Shuttle program before a replacement crew vehicle was available and repeatedly slashing NASA’s commercial crew budget, American astronauts are now 100% dependent on the Russian Soyuz capsule for rides to the ISS and back for several more years ahead.
NASA has NO immediate alternatives to Russia’s Soyuz – period.
The rocket engine injunction is just the latest fallout impacting a vast swath of US space programs from National Defense to NASA stemming from the dangerously escalating crisis between Ukraine and the Russian Federation in the worst confrontation with the West since the Cold War era.
In response to the worsening Ukraine crisis, Western nations have instituted waves of increasingly harsh economic sanctions against Russia and several key members of the Russian government.
Judge Braden’s injunction stands until she receives clarification otherwise from US government entities that the engine purchase is not covered by the Federal government santions.
The order remains in effect “unless and until the court receives the opinion of the United States Department of the Treasury, and the United States Department of Commerce and United States Department of State, that any such purchases or payments will not directly or indirectly contravene Executive Order 13,661.”
ULA issued a swift statement today – received by Universe Today – from ULA’s general counsel Kevin G. MacCary, in response to Judge Braden’s preliminary injunction.
“ULA is deeply concerned with this ruling and we will work closely with the Department of Justice to resolve the injunction expeditiously. In the meantime, ULA will continue to demonstrate our commitment to our National Security on the launch pad by assuring the safe delivery of the missions we are honored to support.”
“SpaceX’s attempt to disrupt a national security launch contract so long after the award ignores the potential implications to our National Security and our nation’s ability to put Americans on board the International Space Station.”
The Atlas V rocket, powered by the Russian made RD-180 engines, will also be used as the launch vehicle by two of the three companies vying for the next round of commercial crew contracts aimed at launching US astronauts to the ISS. The contracts will be awarded by NASA later this year.
“This opportunistic action by SpaceX appears to be an attempt to circumvent the requirements imposed on those who seek to meet the challenging launch needs of the nation and to avoid having to follow the rules, regulations and standards expected of a company entrusted to support our nation’s most sensitive missions,” said ULA.
ULA is a joint venture between aerospace giants Boeing and Lockheed Martin, formed in 2006. It has conducted 81 consecutive launches with 100% mission success – including many NASA science and mission probes like Orion EFT-1, Curiosity, MAVEN, TDRS and more.
Judge Braden furthermore made clear that her order did not include prior RD-180 engine purchases.
“The scope of this preliminary injunction does not extend to any purchase orders that have been placed or moneys paid to NPO Energomash prior to the date of this
Order [April 30, 2014].”
ULA has a two year contingency supply of the RD-180’s and blueprints to begin production, if needed.
However in the event of a cutoff by Russia or US court injuncions, it would take ULA at least three to five years to start and certify RD-180 engine production somewhere in the US, a ULA spokesperson told me recently at Cape Canaveral.
This possibly leaves a 1 to 3 year gap with no Atlas V 1st stage engine supply.
SpaceX claims they can fill part of the launch gap. But their Falcon rockets are not yet certified for National Security launches.
“So far we are most of the way through the certification process. And so far there have been zero changes to the rocket. Mostly it’s just been a paperwork exercise.”
“In light of international events, this seems like the wrong time to send hundreds of millions of dollars to the Kremlin,” said Musk during the April 25 press briefing at the National Press Club in Washington, DC.
Watch for my continuing articles as the Ukraine crisis escalates and court orders fly – with uncertain and potentially dire consequences for US National Security and NASA.
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
SpaceX CEO Elon Musk announces lawsuit protesting Air Force launch contracts while speaking at the National Press Club in Washington, DC on April 25, 2014
Story updated[/caption]
Elon Musk, CEO and founder of the upstart commercial launch venture SpaceX, announced at a press conference today, Friday, April 25, that SpaceX is filing suit against the Federal Government to protest and break the US Air Force’s awarding of lucrative launch contracts for high priority national security satellites to a sole rocket provider – United Launch Alliance (ULA) – on a non competitive basis.
The gloves are officially off in the intensely mounting duel over multibillion dollar Air Force military launch contracts between SpaceX and ULA.
“The official protest document will be available Monday, April 28th at www.freedomtolaunch.com and will be filed with the United States Court of Federal Claims in Washington, D.C.,” said SpaceX in an official statement.
Musk said the Air Force launch contract with ULA amounted to a continuing monopoly, was unfair by blocking SpaceX from competing for launches of surveillance satellites and would cost taxpayers billions of extra dollars in coming years.
“What we feel is that this is not right – that the national security launches should be put up for competition and they should not be awarded on a sole source, uncompeted basis,” said Musk at the briefing called on short notice and held at the National Press Club in Washington, DC.
The latest Air Force launch contract dated to December 2013 guarantees the “block buy” purchase of 36 rocket cores from ULA for national security launches for the DOD, NRO and other government agencies, at a significantly reduced cost compared to earlier contracts.
A further 14 cores were to be awarded on a competitive basis, including bids from SpaceX and others who seek to gain Air Force certification. Several of those launch awards have now been deferred indefinitely.
ULA is a joint venture between aerospace giants Boeing and Lockheed Martin, formed in 2006, that has launched over 80 satellites to orbit and beyond including many NASA science and mission probes like Orion EFT-1, Curiosity, MAVEN, TDRS and more.
It manufactures the Delta IV and Atlas V unmanned, expendable rocket families that are currently the only boosters certified to launch the high value military payloads at issue in the lawsuit announced on Friday by Musk.
The newest versions of the Delta and Atlas rockets – known as EELV’s (Evolved Expendable Launch Vehicles) have had nearly flawless records of success since being introduced some dozen years ago by the companies individually, before the ULA merger.
Musk wants his company’s newer and he says much cheaper Falcon 9 and Falcon Heavy rockets to be certified by the Air Force and included in the competition for launch contracts.
To date the Falcon 9 has launched only 9 times. Only four of those were in the new and more powerful configuration needed by the Air Force.
Musk is not asking that the launches be awarded outright to SpaceX. But he does want the Air Force contract cancelled and re-competed.
“We’re just protesting and saying that the launches should be competed,” Musk said.
“If we compete and lose that’s fine. But why were they not even competed? That just doesn’t make sense.”
“So far we are most of the way through the certification process. And so far there have been zero changes to the rocket. Mostly it’s just been a paperwork exercise.”
“Since this is a large multiyear contract, why not wait a few months for the certification process to complete. And then do the competition. That seems very reasonable to me.”
Musk said it costs four times more to launch ULA’s Delta or Atlas rocket vs. a SpaceX Falcon rocket.
“The ULA rockets are basically four times more expensive than ours. So this contract is costing US taxpayers billions of dollars for no reason.”
“Each launch by ULA costs American taxpayers roughly $400 million per launch. They are insanely expensive. I don’t know why they are so expensive.”
The Falcon 9 lists for about $60 Million per launch, but rises to about $100 million after the certification costs are included, Musk explained.
“So yes the certification does make our Falcon 9 rocket more expensive. But not 400% more expensive.”
“Our rockets are 21st century design,” said Musk to obtain the most efficiency. He said ULA’s designs date back to the 90s and earlier with heritage hardware.
To date the Falcon 9 has already been used three times under a $1.6 Billion contract with NASA to launch the private SpaceX Dragon resupply vessel to the International Space Station (ISS) – most recently a week ago during the April 18 blastoff of the SpaceX CRS-3 mission from Cape Canaveral.
It is also being used to launch highly expensive communications satellites like SES-8 and Thaicom-6 for private companies to geostationary orbits.
“It just seems odd that if our vehicle is good enough for NASA and supporting a $100 billion space station, and it’s good enough for launching NASA science satellites, for launching complex commercial geostationary satellites, then there’s no reasonable basis for it not being capable of launching something quite simple like a GPS satellite,” said Musk.
“Our only option is to file a protest.”
Furthermore as I wrote here in a prior article, US National Security launches are now potentially at risk due to the ongoing crisis between Russian, Ukraine and Crimea because the RD-180 first stage engines powering the Atlas V are designed and manufactured in Russia by NPO Energomash, majority owned by the Russian Federation.
“The head of the Russian space sector, Dmitry Rogozin, was sanctioned by the White House in March 2014 in the wake of Russia’s aggression in Ukraine,” says SpaceX.
The RD-180 engine supply could be cut off in a worst case scenario if economic sanctions against Russia are increased by the Western allies.
ULA has a two year contingency supply of the RD-180’s and blueprints to begin production, if needed.
However in the event of a cutoff, it would take at least three to five years to start and certify RD-180 engine production somewhere in the US, a ULA spokesperson told me recently at Cape Canaveral.
This possibly leaves a 1 to 3 year gap with no Atlas V 1st stage engine supply.
The Delta IV rockets and engines by contrast are manufactured in the US.
“In light of international events, this seems like the wrong time to send hundreds of millions of dollars to the Kremlin,” said Musk.
“Yet, this is what the Air Force’s arrangement with ULA does, despite the fact that there are domestic alternatives available that do not rely on components from countries that pose a national security risk.”
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Delta 4 Heavy rocket and super secret US spy satellite roar off Pad 37 on June 29, 2012 from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com
Stroy updated[/caption]
CAPE CANAVERAL AIR FORCE STATION, FL – The urgent need by the US Air Force to launch a pair of previously classified Space Situational Awareness satellites into Earth orbit this year on an accelerated schedule has bumped the inaugural blastoff of NASA’s highly anticipated Orion pathfinder manned capsule from September to December 2014.
It’s a simple case of US national security taking a higher priority over the launch of NASA’s long awaited unmanned Orion test flight on the Exploration Flight Test-1 (EFT-1) mission.
The EFT-1 flight is NASA’s first concrete step towards sending human crews on Beyond Earth Orbit (BEO) missions since the finale of the Apollo moon landing era in December 1972.
The very existence of the covert Geosynchronous Space Situational Awareness Program, or GSSAP, was only recently declassified during a speech by General William Shelton, commander of the US Air Force Space Command.
Shelton made the announcement regarding the top secret GSSAP program during a Feb. 21 speech about the importance of space and cyberspace at the Air Force Association Air Warfare Symposium and Technology exposition, in Orlando, FL.
US national security requirements forced NASA’s Orion EFT-1 mission to swap launch slots with the GSSAP satellites – which were originally slated to launch later in 2014.
Since both spacecraft will blast off from the same pad at Complex 37 and atop Delta rockets manufactured by United Launch Alliance (ULA), a decision on priorities had to be made – and the military won out.
At a Cape Canaveral media briefing with Delta first stage boosters on Monday, March 17, Universe Today confirmed the order and payloads on the upcoming Delta IV rockets this year.
“The firing sequence for the Delta’s is the USAF Global Positioning System GPS 2F-6 [in May], GSSAP [in September] and Orion EFT-1 [in December], Tony Taliancich, ULA Director of East Coast Launch Operations, told me.
Universe Today also confirmed with the top management at KSC that NASA will absolutely not delay any Orion processing and assembly activities.
Despite the EFT-1 postponement, technicians for prime contractor Lockheed Martin are pressing forward and continue to work around the clock at the Kennedy Space Center (KSC) so that NASA’s Orion spacecraft can still meet the original launch window that opens in mid- September 2014 – in case of future adjustments to the launch schedule sequence.
“Our plan is to have the Orion spacecraft ready because we want to get EFT-1 out so we can start getting the hardware in for Exploration Mission-1 (EM-1) and start processing for that vehicle that will launch on the Space Launch System (SLS) rocket in 2017,” Bob Cabana, director of NASA’s Kennedy Space Center and former shuttle commander, told me.
Shelton stated that two of the GSSAP military surveillance satellites would be launched on the same launch vehicle later this year.
“GSSAP will present a significant improvement in space object surveillance, not only for better collision avoidance, but also for detecting threats,” Shelton said.
“GSSAP will bolster our ability to discern when adversaries attempt to avoid detection and to discover capabilities they may have, which might be harmful to our critical assets at these higher altitudes.”
According to a new GSSAP online fact sheet, the program will be a space-based capability operating in near-geosynchronous orbit, supporting U.S. Strategic Command space surveillance operations as a dedicated Space Surveillance Network sensor.
“Some of our most precious satellites fly in that orbit – one cheap shot against the AEHF [Advanced Extremely High Frequency] constellation would be devastating,” added Shelton. “Similarly, with our Space Based Infrared System, SBIRS, one cheap shot creates a hole in our environment. GSSAP will bolster our ability to discern when adversaries attempt to avoid detection and to discover capabilities they may have which might be harmful to our critical assets at these higher altitudes.”
GSSAP will allow more accurate tracking and characterization of man-made orbiting objects, uniquely contribute to timely and accurate orbital predictions, enhance knowledge of the geosynchronous orbit environment, and further enable space flight safety to include satellite collision avoidance.
The GSSAP satellites were covertly developed by Orbital Sciences and the Air Force.
Two additional follow on GSSAP satellites are slated for launch in 2016.
“We must be prepared as a nation to succeed in increasingly complex and contested space and cyber environments, especially in these domains where traditional deterrence theory probably doesn’t apply,” Shelton explained. “We can’t afford to wait … for that catalyzing event that will prod us to action.”
Orion is NASA’s first spaceship designed to carry human crews on long duration flights to deep space destinations beyond low Earth orbit, such as asteroids, the Moon, Mars and beyond.
The inaugural flight of Orion on the unmanned Exploration Flight Test – 1 (EFT-1) mission had been on schedule to blast off from the Florida Space Coast in mid September 2014 atop a Delta 4 Heavy booster, Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told Universe Today during a recent interview at KSC.
The two-orbit, four- hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
Stay tuned here for Ken’s continuing Orion, Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Learn more at Ken’s upcoming presentations at the NEAF astro/space convention, NY on April 12/13 and at Washington Crossing State Park, NJ on April 6. Also evenings at the Quality Inn Kennedy Space Center, Titusville, FL, March 24/25 and March 29/30