SpaceX CEO Elon Musk Sues Government to Break US Air Force’s National Security Launch Monopoly

SpaceX CEO Elon Musk announces lawsuit protesting Air Force launch contracts while speaking at the National Press Club in Washington, DC on April 25, 2014

SpaceX CEO Elon Musk announces lawsuit protesting Air Force launch contracts while speaking at the National Press Club in Washington, DC on April 25, 2014
Story updated[/caption]

Elon Musk, CEO and founder of the upstart commercial launch venture SpaceX, announced at a press conference today, Friday, April 25, that SpaceX is filing suit against the Federal Government to protest and break the US Air Force’s awarding of lucrative launch contracts for high priority national security satellites to a sole rocket provider – United Launch Alliance (ULA) – on a non competitive basis.

The gloves are officially off in the intensely mounting duel over multibillion dollar Air Force military launch contracts between SpaceX and ULA.

“The official protest document will be available Monday, April 28th at www.freedomtolaunch.com and will be filed with the United States Court of Federal Claims in Washington, D.C.,” said SpaceX in an official statement.

Musk said the Air Force launch contract with ULA amounted to a continuing monopoly, was unfair by blocking SpaceX from competing for launches of surveillance satellites and would cost taxpayers billions of extra dollars in coming years.

“What we feel is that this is not right – that the national security launches should be put up for competition and they should not be awarded on a sole source, uncompeted basis,” said Musk at the briefing called on short notice and held at the National Press Club in Washington, DC.

SpaceX is suing the Air Force for the right to compete for US national security satellites launches using Falcon 9 rockets such as this one which successfully launched the SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX is suing the Air Force for the right to compete for US national security satellites launches using Falcon 9 rockets such as this one which successfully launched the SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The latest Air Force launch contract dated to December 2013 guarantees the “block buy” purchase of 36 rocket cores from ULA for national security launches for the DOD, NRO and other government agencies, at a significantly reduced cost compared to earlier contracts.

A further 14 cores were to be awarded on a competitive basis, including bids from SpaceX and others who seek to gain Air Force certification. Several of those launch awards have now been deferred indefinitely.

ULA is a joint venture between aerospace giants Boeing and Lockheed Martin, formed in 2006, that has launched over 80 satellites to orbit and beyond including many NASA science and mission probes like Orion EFT-1, Curiosity, MAVEN, TDRS and more.

It manufactures the Delta IV and Atlas V unmanned, expendable rocket families that are currently the only boosters certified to launch the high value military payloads at issue in the lawsuit announced on Friday by Musk.

The newest versions of the Delta and Atlas rockets – known as EELV’s (Evolved Expendable Launch Vehicles) have had nearly flawless records of success since being introduced some dozen years ago by the companies individually, before the ULA merger.

Atlas V rocket and Super Secret NROL-67 intelligence gathering payload following rollout to Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, on March 24, 2014. Credit: Ken Kremer - kenkremer.com
Atlas V rocket and Super Secret NROL-67 intelligence gathering payload following rollout to Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, on March 24, 2014. Credit: Ken Kremer – kenkremer.com

Musk wants his company’s newer and he says much cheaper Falcon 9 and Falcon Heavy rockets to be certified by the Air Force and included in the competition for launch contracts.

To date the Falcon 9 has launched only 9 times. Only four of those were in the new and more powerful configuration needed by the Air Force.

Musk is not asking that the launches be awarded outright to SpaceX. But he does want the Air Force contract cancelled and re-competed.

“We’re just protesting and saying that the launches should be competed,” Musk said.

“If we compete and lose that’s fine. But why were they not even competed? That just doesn’t make sense.”

“So far we are most of the way through the certification process. And so far there have been zero changes to the rocket. Mostly it’s just been a paperwork exercise.”

“Since this is a large multiyear contract, why not wait a few months for the certification process to complete. And then do the competition. That seems very reasonable to me.”

Musk said it costs four times more to launch ULA’s Delta or Atlas rocket vs. a SpaceX Falcon rocket.

“The ULA rockets are basically four times more expensive than ours. So this contract is costing US taxpayers billions of dollars for no reason.”

“Each launch by ULA costs American taxpayers roughly $400 million per launch. They are insanely expensive. I don’t know why they are so expensive.”

The Falcon 9 lists for about $60 Million per launch, but rises to about $100 million after the certification costs are included, Musk explained.

“So yes the certification does make our Falcon 9 rocket more expensive. But not 400% more expensive.”

“Our rockets are 21st century design,” said Musk to obtain the most efficiency. He said ULA’s designs date back to the 90s and earlier with heritage hardware.

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

To date the Falcon 9 has already been used three times under a $1.6 Billion contract with NASA to launch the private SpaceX Dragon resupply vessel to the International Space Station (ISS) – most recently a week ago during the April 18 blastoff of the SpaceX CRS-3 mission from Cape Canaveral.

It is also being used to launch highly expensive communications satellites like SES-8 and Thaicom-6 for private companies to geostationary orbits.

“It just seems odd that if our vehicle is good enough for NASA and supporting a $100 billion space station, and it’s good enough for launching NASA science satellites, for launching complex commercial geostationary satellites, then there’s no reasonable basis for it not being capable of launching something quite simple like a GPS satellite,” said Musk.

“Our only option is to file a protest.”

Furthermore as I wrote here in a prior article, US National Security launches are now potentially at risk due to the ongoing crisis between Russian, Ukraine and Crimea because the RD-180 first stage engines powering the Atlas V are designed and manufactured in Russia by NPO Energomash, majority owned by the Russian Federation.

SpaceX CEO Elon Musk announces lawsuit protesting Air Force launch contracts while speaking at the National Press Club in Washington, DC on April 25, 2014.
SpaceX CEO Elon Musk announces lawsuit protesting Air Force launch contracts while speaking at the National Press Club in Washington, DC on April 25, 2014

“The head of the Russian space sector, Dmitry Rogozin, was sanctioned by the White House in March 2014 in the wake of Russia’s aggression in Ukraine,” says SpaceX.

The RD-180 engine supply could be cut off in a worst case scenario if economic sanctions against Russia are increased by the Western allies.

ULA has a two year contingency supply of the RD-180’s and blueprints to begin production, if needed.

However in the event of a cutoff, it would take at least three to five years to start and certify RD-180 engine production somewhere in the US, a ULA spokesperson told me recently at Cape Canaveral.

This possibly leaves a 1 to 3 year gap with no Atlas V 1st stage engine supply.

The Delta IV rockets and engines by contrast are manufactured in the US.

“In light of international events, this seems like the wrong time to send hundreds of millions of dollars to the Kremlin,” said Musk.

“Yet, this is what the Air Force’s arrangement with ULA does, despite the fact that there are domestic alternatives available that do not rely on components from countries that pose a national security risk.”

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Crucial Radar Outage Scrubs US National Security and SpaceX Launches for Several Weeks from Cape Canaveral

United Launch Alliance Atlas V rocket – powered by Russian made RD-180 engines – and Super Secret NROL-67 intelligence gathering payload poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, in March 2014. Credit: Ken Kremer – kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – The sudden and unexpected outage of a crucial tracking radar that is mandatory to insure public safety, has forced the scrub of a pair of launches planned for this week from Cape Canaveral, FL, that are vital to US National Security, United Launch Alliance, SpaceX and NASA.

The tracking radar is an absolutely essential asset for the Eastern Range that oversees all launches from Cape Canaveral Air Force Station and the Kennedy Space Center on the Florida Space Coast.

The pair of liftoffs for the National Reconnaissance Office (NRO) and SpaceX/NASA had been slated just days apart on March 25 and March 30.

Urgent repairs are in progress.

Both launches have now been postponed for a minimum of 3 weeks, according to a statement I received from the 45th Space Wing of the US Air Force that controls the critical launch control systems, communications, computers and radar elements.

An Atlas V rocket carrying the super secret NROL-67 intelligence gathering spy satellite for the National Reconnaissance Office and a SpaceX Falcon 9 rocket carrying a Dragon cargo freightor bound for the International Space Station (ISS) were both in the midst of the final stages of intensive pre-launch processing activities this week.

The Eastern range radar was apparently knocked out by a fire on March 24, a short time after the early morning rollout of the United Launch Alliance (ULA) Atlas V rocket to the launch pad at Space Launch Complex 41 on Cape Canaveral.

“An investigation revealed a tracking radar experienced an electrical short, overheating the unit and rendering it inoperable,” according to today’s explanatory statement from the USAF 45th Space Wing.

“The outage resulted in an inability to meet minimum public safety requirements needed for flight, so the launch was postponed.”

A SpaceX spokesperson likewise confirmed to me that their launch was also on hold.

Artwork for Super Secret NROL-67 payload launching on Atlas V rocket. Credit: NRO/ULA
Artwork for Super Secret NROL-67 payload launching on Atlas V rocket. Credit: NRO/ULA

A fully functional tracking radar is an absolute requirement to ensure the success and safety of any launch.

The range radar must also be functioning perfectly in order to destroy the rocket in a split second in the event it veers off course to the nearby heavily populated areas along the Space Coast.

Myself and other space journalists had been working at Pad 41 on March 24 and setting up our remote cameras to capture spectacular up close views of the blastoff that had then been scheduled for March 25.

Atlas V rocket and Super Secret NROL-67 intelligence gathering payload following rollout to Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, on March 24, 2014. Credit: Ken Kremer - kenkremer.com
Atlas V rocket and Super Secret NROL-67 intelligence gathering payload following rollout to Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, on March 24, 2014. Credit: Ken Kremer – kenkremer.com

Insufficient maintenance and antiquated equipment due to a lack of US government funding and investment in infrastructure may be implicated.

The range outage for such an extended period of time reveals a clear vulnerability in US National Security planning.

The Air Force is also looking into the feasibility of reviving an inactive radar as a short term quick fix.

But in order to use the retired backup system, it will also have to re-validated to ensure utility and that all launch control and public safety requirements are fully met.

Simultaneously, the engineering team is recalculating launch trajectories and range requirements.

Such a revalidation process will also require an unknown period of time.

The full impact of putting these two launches on hold for the NRO and SpaceX is not known at this time.

An upgraded SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS is slated to launch on March 16, 2014 from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com
An upgraded SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS is slated to launch on March 16, 2014 from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com

Furthermore, the USAF will need to determine the downstream scheduling impact on the very busy manifest of all of the remaining launches throughout 2014 – averaging more than one per month.

Neither the NRO nor NASA and SpaceX have announced firm new launch dates.

The earliest possible Atlas V launch date appears to be sometime in mid-April, but that assessment can change on a dime.

In the meantime, personnel from the 45th Space Wing will continue to work diligently to repair the range radar equipment as quickly as possible.

ULA engineers also rolled the Atlas V rocket back to its processing hanger until a new launch target date is set.

SpaceX likewise awaits a target launch date for the Dragon CRS-3 cargo mission packed with some 5000 pounds of science experiments and supplies for the six man station crew.

It seems likely that the next Orbital Sciences Antares/Cygnus launch to the ISS will also have to be postponed since Dragon and Cygnus berth at the same station port.

Space journalists and photographers pose at Launch Pad 41 during camera setup with the Atlas V rocket slated to loft super secret NROL-67 spy satellite to orbit. Ken Kremer/Universe Today at right.  Credit: Ken Kremer - kenkremer.com
Space journalists and photographers pose at Launch Pad 41 during camera setup with the Atlas V rocket slated to loft super secret NROL-67 spy satellite to orbit; Ben Cooper, Don Hludiak, Mike Howard, Mike Deep, Matthew Travis, Hap Griffin, Jeff Seibert, Alan Walters, Julian Leek, Ken Kremer/Universe Today at right. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Atlas V NROL 67, SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Learn more at Ken’s upcoming presentations at the NEAF astro/space convention, NY on April 12/13 and at Washington Crossing State Park, NJ on April 6. Also at the Quality Inn Kennedy Space Center, Titusville, FL, March 29.

Ken Kremer

AEHF-1 Rides Atlas V To Orbit

A United Launch Alliance Atlas V carries the AEHF-1 satellite to orbit.

[/caption]

The U.S. Air Force successfully launched the first Advanced Extremely High Frequency satellite (AEHF-1) on top of a United Launch Alliance (ULA) Atlas V rocket Saturday, Aug. 14 at 7:07 a.m. EDT. The Atlas V lifted off from Cape Canaveral Air Force Station’s Space Launch Complex 41 (SLC 41) riding a pillar of flame across the morning sky. The window for the launch was two hours long, however it wasn’t needed, the launch occurred on the first attempt. 

“As we expected it was a totally successful launch.” said U.S. Air Force Captain Glorimar Rodriguez.

The AEHF constellation of satellites will replace the aging Milstar satellites. The more-modern AEHF is designed to ensure rapid communications for military leaders. This new, jam-proof system will be the link between the president and the armed forces in the event of a nuclear attack. Lockheed Martin is the prime contractor to construct both the AEHF fleet of satellites as well as the mission control center where the satellites will be operated.

AEHF launch. Credit: Alan Walters (awaltersphoto.com) for Universe Today

There are a number of U.S. allies that are involved with the AEHF program and can use these satellites once the system is activated. Some of these allies include the Netherlands, Canada and the United Kingdom.

When the system is complete it will be comprised of three functioning satellites and a spare satellite. These satellites will be inter-connected and are capable of communicating with one another. They will provide the military with vital communications-related data including, but not limited to, maps, video and targeting data. When operational, the AEHF constellation will be operated by the 4th Space Operations Squadron, who are stationed at Schriever Air Force Base, CO.

Pre-launch. Cape Canaveral Air Force Station’s Space Launch Complex 41. Credit: Alan Walters (awaltersphoto.com) for Universe Today