What is the Average Surface Temperature on Venus?

False color radar topographical map of Venus provided by Magellan. Credit: Magellan Team/JPL/NASA

Venus is often referred to as our “sister planet,” due to the many geophysical similarities that exist between it Earth. For starters, our two planets are close in mass, with Venus weighing in at 4.868 x 1024 kg compared to Earth’s 5.9736×1024 kg. In terms of size, the planets are almost identical, with Venus measuring 12,100 km in diameter and Earth 12,742 km.

In terms of density and gravity, the two are neck and neck – with Venus boasting 86.6% of the former and 90.7% of the latter. Venus also has a thick atmosphere, much like our own, and it is believed that both planets share a common origin, forming at the same time out of a condensing clouds of dust particles around 4.5 billion years ago.

However, for all the characteristics these two planets have in common, average temperature is not one of them. Whereas the Earth has an average surface temperature of 14 degrees Celsius, the average temperature of Venus is 460 degrees Celsius. That is roughly 410 degrees hotter than the hottest deserts on our planet.

In fact, at a searing 750 K (477 °C), the surface of Venus is the hottest in the solar system. Venus is closer to the Sun by 108 million km, (about 30% closer than the Earth), but it is mainly due to the planet’s thick atmosphere. Unlike Earth’s, which is composed primarily of nitrogen, oxygen and ozone, Venus’ atmosphere is an incredibly dense cloud of carbon dioxide and sulfur dioxide gas.

The combination of these gases in high concentrations causes a catastrophic greenhouse effect that traps incident sunlight and prevents it from radiating into space. This results in an estimated surface temperature boost of 475 K (201.85 °C), leaving the surface a molten, charred mess that nothing (that we know of) can live on. Atmospheric pressure also plays a role, being 91 times that of what it is here on Earth; and clouds of toxic vapor constantly rain sulfuric acid on the surface.

In addition, the surface temperature on Venus does not vary like it does here on Earth. On our planet, temperatures vary wildly due to the time of year and even more so based on the location on our planet. The hottest temperature ever recorded on Earth was 70.7°C in the Lut Desert of Iran in 2005. On the other end of the spectrum, the coldest temperature ever recorded on Earth was in Vostok, Antarctica at -89.2 C.

But on Venus, the surface temperature is 460 degrees Celsius, day or night, at the poles or at the equator. Beyond its thick atmosphere, Venus’ axial tilt (aka. obliquity) plays a role in this temperature consistency. Earth’s axis is tilted 23.4 ° in relation to the Sun, whereas Venus’ is only tilted by 3 °.

The only respite from the heat on Venus is to be found around 50 km into the atmosphere. It is at that point that temperatures and atmospheric pressure are equal to that of Earth’s. It is for this reason that some scientists believe that floating habitats could be constructed here, using Venus’ thick clouds to buoy the habitats high above the surface. Additionally, in 2014, a group of mission planners from NASA Langely came up with a mission to Venus’ atmosphere using airships.

These habitats could play an important role in the terraforming of Venus as well, acting as scientific research stations that could either fire off the excess atmosphere off into space, or introduce bacteria or chemicals that could convert all the CO2 and SO2 into a hospitable, breathable atmosphere.

Beyond the fact that it is a hot and hellish landscape, very little is known about Venus’ surface environment. This is due to the thick atmosphere, which has made visual observation impossible. The sulfuric acid is also problematic since clouds composed of it are highly reflective of visible light, which prevents optical observation. Probes have been sent to the surface in the past, but the volatile and corrosive environment means that anything that lands there can only survive for a few hours.

3-D perspective of the Venusian volcano, Maat Mons generated from radar data from NASA’s Magellan mission.
3-D perspective of the Venusian volcano, Maat Mons generated from radar data from NASA’s Magellan mission. Credit: Magellan Team/NASA/JPL

What little we know about the planet’s surface has come from years worth of radar imaging, the most recent of which was conducted by NASA’s Magellan spacecraft (aka. the Venus Radar Mapper). Using synthetic aperture radar, the robotic space probe spent four years (1990-1994) mapping the surface of Venus and measuring its gravitational field before its orbit decayed and it was “disposed of” in the planet’s atmosphere.

The images provided by this and other missions revealed a surface dominated by volcanoes. There are at least 1,000 volcanoes or volcanic centers larger than 20 km in diameter on Venus’ harsh landscape. Many scientists believe Venus was resurfaced by volcanic activity 300 to 500 million years ago. Lava flows are a testament to this, which appear to have produced channels of hardened magma that extend for hundreds of km in all directions. The mixture of volcanic ash and the sulfuric acid clouds is also known to produce intense lightning and thunder storms.

The temperature of Venus is not the only extreme on the planet. The atmosphere is constantly churned by hurricane force winds reaching 360 kph. Add to that the crushing air pressure and rainstorms of sulfuric acid, and it becomes easy to see why Venus is such a barren, lifeless rock that has been hard to explore.

We have written many articles about Venus for Universe Today. Here are some interesting facts about Venus, and here’s an article about Venus Greenhouse Effect. And here is an article about the many interesting pictures taken of Venus over the past few decades.

If you’d like more information on Venus, check out Hubblesite’s News Releases about Venus, and here’s a link to NASA’s Solar System Exploration Guide on Venus.

We’ve also recorded an entire episode of Astronomy Cast all about Venus. Listen here, Episode 50: Venus.

Reference:
NASA

Why Is Venus So Horrible?

Why Is Venus So Horrible?

Venus really sucks. It’s as hot as an oven with a dense, poisonous atmosphere. But how did it get that way?

Venus sucks. Seriously, it’s the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you dead in moments.

Let’s push Venus into the Sun and be done with that terrible place. Its proximity is lowering our real estate values and who knows what sort of interstellar monstrosities are going to set up shop there, and be constantly knocking on our door to borrow the mower, or a cup or sugar, or sneak into our yard at night and eat all our dolphins.

You might argue that Venus is worth saving because it’s located within the Solar System’s habitable zone, that special place where water could exist in a liquid state on the surface. But we’re pretty sure it doesn’t have any liquid water. Venus may have been better in the past, clearly it started hanging out with wrong crowd, taking a bad turn down a dark road leading it to its current state of disrepair.

Could Venus have been better in the past? And how did it go so wrong? In many ways, Venus is a twin of the Earth. It’s almost the same size and mass as the Earth, and it’s made up of roughly the same elements. And if you stood on the surface of Venus, in the brief moments before you evacuated your bowels and died horribly, you’d notice the gravity feels pretty similar.

In the ancient past, the Sun was dimmer and cooler than it is now. Cool enough that Venus was much more similar to Earth with rivers, lakes and oceans. NASA’s Pioneer spacecraft probed beneath the planet’s thick clouds and revealed that there was once liquid water on the surface of Venus. And with liquid water, there could have been life on the surface and in those oceans.

Here’s where Venus went wrong. It’s about a third closer to the Sun than Earth, and gets roughly double the solar radiation. The Sun has been slowly heating up over the millions and billions of years. At some point, the planet reached a tipping point, where the water on the surface of Venus completely evaporated into the atmosphere.

False color radar topographical map of Venus provided by Magellan. Credit: Magellan Team/JPL/NASA
False color radar topographical map of Venus provided by Magellan. Credit: Magellan Team/JPL/NASA

Water vapor is a powerful greenhouse gas, and this only increased the global temperature, creating a runaway greenhouse effect on Venus. The ultraviolet light from the Sun split apart the water vapor into oxygen and hydrogen. The hydrogen was light enough to escape the atmosphere of Venus into space, while the oxygen recombined with carbon to form the thick carbon dioxide atmosphere we see today. Without that hydrogen, Venus’ water is never coming back.

Are you worried about our changing climate doing that here? Don’t panic. The amount of carbon dioxide released into the atmosphere of Venus is incomprehensible. According to the IPCC, the folks studying global warming, human activities have no chance of unleashing runaway global warming. We’ll just have the regular old, really awful global warming. So, it’s okay to panic a bit, but do it in the productive way that results in your driving your car less.

The Sun is still slowly heating up. And in a billion years or so, temperatures here will get hot enough to boil the oceans away. And then, Earth and Venus will be twins again and then we can push them both into the Sun.

I know, I said the words “climate change”. Feel free to have an argument in the comments below, but play nice and bring science.

What is the Average Surface Temperature of the Planets in our Solar System?

Artist's impression of the planets in our solar system, along with the Sun (at bottom). Credit: NASA

It’s is no secret that Earth is the only inhabited planet in our Solar System. All the planets besides Earth lack a breathable atmosphere for terrestrial beings, but also, many of them are too hot or too cold to sustain life. A “habitable zone” which exists within every system of planets orbiting a star. Those planets that are too close to their sun are molten and toxic, while those that are too far outside it are icy and frozen.

But at the same time, forces other than position relative to our Sun can affect surface temperatures. For example, some planets are tidally locked, which means that they have one of their sides constantly facing towards the Sun. Others are warmed by internal geological forces and achieve some warmth that does not depend on exposure to the Sun’s rays. So just how hot and cold are the worlds in our Solar System? What exactly are the surface temperatures on these rocky worlds and gas giants that make them inhospitable to life as we know it?

Mercury:

Of our eight planets, Mercury is closest to the Sun. As such, one would expect it to experience the hottest temperatures in our Solar System. However, since Mercury also has no atmosphere and it also spins very slowly compared to the other planets, the surface temperature varies quite widely.

What this means is that the side exposed to the Sun remains exposed for some time, allowing surface temperatures to reach up to a molten 465 °C. Meanwhile, on the dark side, temperatures can drop off to a frigid -184°C. Hence, Mercury varies between extreme heat and extreme cold and is not the hottest planet in our Solar System.

Venus imaged by Magellan Image Credit: NASA/JPL
Venus is an incredibly hot and hostile world, due to a combination of its thick atmosphere and proximity to the Sun. Image Credit: NASA/JPL

Venus:

That honor goes to Venus, the second closest planet to the Sun which also has the highest average surface temperatures – reaching up to 460 °C on a regular basis. This is due in part to Venus’ proximity to the Sun, being just on the inner edge of the habitability zone, but also to Venus’ thick atmosphere, which is composed of heavy clouds of carbon dioxide and sulfur dioxide.

These gases create a strong greenhouse effect which traps a significant portion of the Sun’s heat in the atmosphere and turns the planet surface into a barren, molten landscape. The surface is also marked by extensive volcanoes and lava flows, and rained on by clouds of sulfuric acid. Not a hospitable place by any measure!

Earth:

Earth is the third planet from the Sun, and so far is the only planet that we know of that is capable of supporting life. The average surface temperature here is about 14 °C, but it varies due to a number of factors. For one, our world’s axis is tilted, which means that one hemisphere is slanted towards the Sun during certain times of the year while the other is slanted away.

This not only causes seasonal changes, but ensures that places located closer to the equator are hotter, while those located at the poles are colder. It’s little wonder then why the hottest temperature ever recorded on Earth was in the deserts of Iran (70.7 °C) while the lowest was recorded in Antarctica (-89.2 °C).

Mars' thin atmosphere, visible on the horizon, is too weak to retain heat. Credit: NASA
Mars’ thin atmosphere, visible on the horizon, is too weak to retain heat. Credit: NASA

Mars:

Mars’ average surface temperature is -55 °C, but the Red Planet also experiences some variability, with temperatures ranging as high as 20 °C at the equator during midday, to as low as -153 °C at the poles. On average though, it is much colder than Earth, being just on the outer edge of the habitable zone, and because of its thin atmosphere – which is not sufficient to retain heat.

In addition, its surface temperature can vary by as much as 20 °C due to Mars’ eccentric orbit around the Sun (meaning that it is closer to the Sun at certain points in its orbit than at others).

Jupiter:

Since Jupiter is a gas giant, it has no solid surface, so it has no surface temperature. But measurements taken from the top of Jupiter’s clouds indicate a temperature of approximately -145°C. Closer to the center, the planet’s temperature increases due to atmospheric pressure.

At the point where atmospheric pressure is ten times what it is on Earth, the temperature reaches 21°C, what we Earthlings consider a comfortable “room temperature”. At the core of the planet, the temperature is much higher, reaching as much as 35,700°C – hotter than even the surface of the Sun.

Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute. Assembled by Gordan Ugarkovic.
Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute/Gordan Ugarkovic

Saturn:

Due to its distance from the Sun, Saturn is a rather cold gas giant planet, with an average temperature of -178 °Celsius. But because of Saturn’s tilt, the southern and northern hemispheres are heated differently, causing seasonal temperature variation.

And much like Jupiter, the temperature in the upper atmosphere of Saturn is cold, but increases closer to the center of the planet. At the core of the planet, temperatures are believed to reach as high as 11,700 °C.

Uranus:

Uranus is the coldest planet in our Solar System, with a lowest recorded temperature of -224°C. Despite its distance from the Sun, the largest contributing factor to its frigid nature has to do with its core.

Much like the other gas giants in our Solar System, the core of Uranus gives off far more heat than is absorbed from the Sun. However, with a core temperature of approximately 4,737 °C, Uranus’ interior gives of only one-fifth the heat that Jupiter’s does and less than half that of Saturn.

Neptune photographed by Voyage. Image credit: NASA/JPL
Neptune photographed by Voyager 2. Image credit: NASA/JPL

Neptune:

With temperatures dropping to -218°C in Neptune’s upper atmosphere, the planet is one of the coldest in our Solar System. And like all of the gas giants, Neptune has a much hotter core, which is around 7,000°C.

In short, the Solar System runs the gambit from extreme cold to extreme hot, with plenty of variance and only a few places that are temperate enough to sustain life. And of all of those, it is only planet Earth that seems to strike the careful balance required to sustain it perpetually.

Universe Today has many articles on the temperature of each planet, including the temperature of Mars and the temperature of Earth.

You may also want to check out these articles on facts about the planets and an overview of the planets.

NASA has a great graphic here that compares the temperatures of all the planets in our Solar System.

Astronomy Cast has episodes on all planets including Mercury.

Earth May Have Lost Some Primoridial Atmosphere to Meteors

Earth's Hadean Eon is a bit of a mystery to us, because geologic evidence from that time is scarce. Researchers at the Australian National University have used tiny zircon grains to get a better picture of early Earth. Credit: NASA
Earth's Hadean Eon is a bit of a mystery to us, because geologic evidence from that time is scarce. Researchers at the Australian National University have used tiny zircon grains to get a better picture of early Earth. Credit: NASA

During the Hadean Eon, some 4.5 billion years ago, the world was a much different place than it is today. As the name Hades would suggest (Greek for “underworld”), it was a hellish period for Earth, marked by intense volcanism and intense meteoric impacts. It was also during this time that outgassing and volcanic activity produced the primordial atmosphere composed of carbon dioxide, hydrogen and water vapor.

Little of this primordial atmosphere remains, and geothermal evidence suggests that the Earth’s atmosphere may have been completely obliterated at least twice since its formation more than 4 billion years ago. Until recently, scientists were uncertain as to what could have caused this loss.

But a new study from MIT, Hebrew Univeristy, and Caltech indicates that the intense bombardment of meteorites in this period may have been responsible.

This meteoric bombardment would have taken place at around the same time that the Moon was formed. The intense bombardment of space rocks would have kicked up clouds of gas with enough force to permanent eject the atmosphere into space. Such impacts may have also blasted other planets, and even peeled away the atmospheres of Venus and Mars.

In fact, the researchers found that small planetesimals may be much more effective than large impactors –  such as Theia, whose collision with Earth is believed to have formed the Moon – in driving atmospheric loss. Based on their calculations, it would take a giant impact to disperse most of the atmosphere; but taken together, many small impacts would have the same effect.

Artist's concept of a collision between proto-Earth and Theia, believed to happened 4.5 billion years ago. Credit: NASA
Artist’s concept of a collision between proto-Earth and Theia, believed to happened 4.5 billion years ago. Credit: NASA

Hilke Schlichting, an assistant professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences, says understanding the drivers of Earth’s ancient atmosphere may help scientists to identify the early planetary conditions that encouraged life to form.

“[This finding] sets a very different initial condition for what the early Earth’s atmosphere was most likely like,” Schlichting says. “It gives us a new starting point for trying to understand what was the composition of the atmosphere, and what were the conditions for developing life.”

What’s more, the group examined how much atmosphere was retained and lost following impacts with giant, Mars-sized and larger bodies and with smaller impactors measuring 25 kilometers or less.

What they found was that a collision with an impactor as massive as Mars would have the necessary effect of generating a massive a shockwave through the Earth’s interior and potentially ejecting a significant fraction of the planet’s atmosphere.

However, the researchers determined that such an impact was not likely to have occurred, since it would have turned Earth’s interior into a homogenous slurry. Given the appearance of diverse elements observed within the Earth’s interior, such an event does not appear to have happened in the past.

A series of smaller impactors, by contrast, would generate an explosion of sorts, releasing a plume of debris and gas. The largest of these impactors would be forceful enough to eject all gas from the atmosphere immediately above the impact zone. Only a fraction of this atmosphere would be lost following smaller impacts, but the team estimates that tens of thousands of small impactors could have pulled it off.

An artistic conception of the early Earth, showing a surface pummeled by large impact, resulting in extrusion of deep seated magma onto the surface. At the same time, distal portion of the surface could have retained liquid water. Credit: Simone Marchi
Artist’s concept of the early Earth, showing a surface pummeled by large impacts. Credit: Simone Marchi

Such a scenario did likely occur 4.5 billion years ago during the Hadean Eon. This period was one of galactic chaos, as hundreds of thousands of space rocks whirled around the solar system and many are believed to have collided with Earth.

“For sure, we did have all these smaller impactors back then,” Schlichting says. “One small impact cannot get rid of most of the atmosphere, but collectively, they’re much more efficient than giant impacts, and could easily eject all the Earth’s atmosphere.”

However, Schlichting and her team realized that the sum effect of small impacts may be too efficient at driving atmospheric loss. Other scientists have measured the atmospheric composition of Earth compared with Venus and Mars; and compared to Venus, Earth’s noble gases have been depleted 100-fold. If these planets had been exposed to the same blitz of small impactors in their early history, then Venus would have no atmosphere today.

She and her colleagues went back over the small-impactor scenario to try and account for this difference in planetary atmospheres. Based on further calculations, the team identified an interesting effect: Once half a planet’s atmosphere has been lost, it becomes much easier for small impactors to eject the rest of the gas.

The researchers calculated that Venus’ atmosphere would only have to start out slightly more massive than Earth’s in order for small impactors to erode the first half of the Earth’s atmosphere, while keeping Venus’ intact. From that point, Schlichting describes the phenomenon as a “runaway process — once you manage to get rid of the first half, the second half is even easier.”

This gave rise to another important question: What eventually replaced Earth’s atmosphere? Upon further calculations, Schlichting and her team found the same impactors that ejected gas also may have introduced new gases, or volatiles.

“When an impact happens, it melts the planetesimal, and its volatiles can go into the atmosphere,” Schlichting says. “They not only can deplete, but replenish part of the atmosphere.”

The "impact farm:, an area on Venus marked by impact craters and volcanic activity. Credit: NASA/JPL
The “impact farm:, an area on Venus marked by impact craters and volcanic activity. Credit: NASA/JPL

The group calculated the amount of volatiles that may be released by a rock of a given composition and mass, and found that a significant portion of the atmosphere may have been replenished by the impact of tens of thousands of space rocks.

“Our numbers are realistic, given what we know about the volatile content of the different rocks we have,” Schlichting notes.

Jay Melosh, a professor of earth, atmospheric, and planetary sciences at Purdue University, says Schlichting’s conclusion is a surprising one, as most scientists have assumed the Earth’s atmosphere was obliterated by a single, giant impact. Other theories, he says, invoke a strong flux of ultraviolet radiation from the sun, as well as an “unusually active solar wind.”

“How the Earth lost its primordial atmosphere has been a longstanding problem, and this paper goes a long way toward solving this enigma,” says Melosh, who did not contribute to the research. “Life got started on Earth about this time, and so answering the question about how the atmosphere was lost tells us about what might have kicked off the origin of life.”

Going forward, Schlichting hopes to examine more closely the conditions underlying Earth’s early formation, including the interplay between the release of volatiles from small impactors and from Earth’s ancient magma ocean.

“We want to connect these geophysical processes to determine what was the most likely composition of the atmosphere at time zero, when the Earth just formed, and hopefully identify conditions for the evolution of life,” Schlichting says.

Schlichting and her colleagues have published their results in the February edition of the journal Icarus.

Further Reading: MIT News

The Inner Planets of Our Solar System

The terrestrial planets of our Solar System at approximately relative sizes. From left, Mercury, Venus, Earth and Mars. Credit: Lunar and Planetary Institute

Our Solar System is an immense and amazing place. Between its eight planets, 176 moons, 5 dwarf planets (possibly hundreds more), 659,212 known asteroids, and 3,296 known comets, it has wonders to sate the most demanding of curiosities. Our Solar System is made up of different regions, which are delineated based on their distance from the Sun, but also the types of planets and bodies that can be found within them.

In the inner Solar System, we find the “Inner Planets” – Mercury, Venus, Earth, and Mars – which are so named because they orbit closest to the Sun. In addition to their proximity, these planets have a number of key differences that set them apart from planets elsewhere in the Solar System.

For starters, the inner planets are rocky and terrestrial, composed mostly of silicates and metals, whereas the outer planets are gas giants. The inner planets are also much more closely spaced than their outer Solar System counterparts. In fact, the radius of the entire region is less than the distance between the orbits of Jupiter and Saturn.

The positions and names of planets and dwarf planets in the solar system. Credit: Planets2008/Wikimedia Commons
The positions and names of planets and dwarf planets in the solar system.
Credit: Planets2008/Wikimedia Commons

This region is also within the “frost line,” which is a little less than 5 AU (about 700 million km) from the Sun. This line represents the boundary in a system where conditions are warm enough that hydrogen compounds such as water, ammonia, and methane are able to take liquid form. Beyond the frost line, these compounds condense into ice grains.Some scientists refer to the frost line as the “Goldilocks Zone” — where conditions for life may be “just right.”

Generally, inner planets are smaller and denser than their counterparts, and have few to no moons or rings circling them. The outer planets, meanwhile, often have dozens of satellites and rings composed of particles of ice and rock.

The terrestrial inner planets are composed largely of refractory minerals, such as the silicates, which form their crusts and mantles, and metals such as iron and nickel which form their cores. Three of the four inner planets (Venus, Earth and Mars) have atmospheres substantial enough to generate weather. All of them have impact craters and tectonic surface features as well, such as rift valleys and volcanoes.

Mercury:

Of the inner planets, Mercury is the closest to our Sun and the smallest of the terrestrial planets. This small planet looks very much like the Earth’s Moon and is even a similar grayish color, and it even has many deep craters and is covered by a thin layer of tiny particle silicates.

Its magnetic field is only about 1 percent that of Earth’s, and it’s very thin atmosphere means that it is hot during the day (up to 430°C) and freezing at night (as low as -187 °C) because the atmosphere can neither keep heat in or out. It has no moons of its own and is comprised mostly of iron and nickel. Mercury is one of the densest planets in the Solar System.

The inner planets to scale. From left to right: Earth, Mars, Venus, and Mercury. Credit: Wikimedia Commons/Lsmpascal
The inner planets to scale. From left to right: Earth, Mars, Venus, and Mercury. Credit: Wikimedia Commons/Lsmpascal

Venus:

Venus, which is about the same size as Earth, has a thick toxic atmosphere that traps heat, making it the hottest planet in the Solar System. This atmosphere is composed of 96% carbon dioxide, along with nitrogen and a few other gases. Dense clouds within Venus’ atmosphere are composed of sulphuric acid and other corrosive compounds, with very litter water.

Only two spacecraft have ever penetrated Venus’s thick atmosphere, but it’s not just man-made objects that have trouble getting through. There are fewer crater impacts on Venus than other planets because all but the largest meteors don’t make it through the thick air without disintegrating. Much of Venus’ surface is marked with volcanoes and deep canyons — the biggest of which is over 6400 km (4,000 mi) long.

Venus is often called the “morning star” because, with the exception of Earth’s moon, it’s the brightest object we see in the sky. Like Mercury, Venus has no moon of its own.

Earth:

Earth is the third inner planet and the one we know best. Of the four terrestrial planets, Earth is the largest, and the only one that currently has liquid water, which is necessary for life as we know it. Earth’s atmosphere protects the planet from dangerous radiation and helps keep valuable sunlight and warmth in, which is also essential for life to survive.

Inner Solar System. Image credit: NASA
Illustration of the Inner Planets and their orbits around the Sun Image credit: NASA

Like the other terrestrial planets, Earth has a rocky surface with mountains and canyons, and a heavy metal core. Earth’s atmosphere contains water vapor, which helps to moderate daily temperatures. Like Mercury, the Earth has an internal magnetic field. And our Moon, the only one we have, is comprised of a mixture of various rocks and minerals.

Mars:

Mars is the fourth and final inner planet, and also known as the “Red Planet” due to the rust of iron-rich materials that form the planet’s surface. Mars also has some of the most interesting terrain features of any of the terrestrial planets. These include the largest mountain in the Solar System – Olympus Mons – which rises some 21,229 m (69,649 ft) above the surface, and a giant canyon called Valles Marineris. Valles Marineris is 4000 km (2500 mi) long and reaches depths of up to 7 km (4 mi)!

For comparison, the Grand Canyon in Arizona is about 800 km (500 mi) long and 1.6 km (1 mi) deep. In fact, the extent of Valles Marineris is as long as the United States and it spans about 20 percent (1/5) of the entire distance around Mars. Much of the surface is very old and filled with craters, but there are geologically newer areas of the planet as well.

A top-down image of the orbits of Earth and Mars. Image: NASA
A top-down image of the orbits of Earth and Mars. Credit: NASA

At the Martian poles are polar ice caps that shrink in size during the Martian spring and summer. Mars is less dense than Earth and has a smaller magnetic field, which is indicative of a solid core, rather than a liquid one.

Mars’ thin atmosphere has led some astronomers to believe that the surface water that once existed there might have actually taken liquid form, but has since evaporated into space. The planet has two small moons called Phobos and Deimos.

Beyond Mars are the four outer planets: Jupiter, Saturn, Uranus, and Neptune.

We have written many interesting articles about the inner planets here at Universe Today. Here’s The Solar System Guide as well as The Inner and Outer Planets in Our Solar System.

For more information, check out this article from NASA on the planets of the Solar System and this article from Solstation about the inner planets.

Astronomy Cast also has episodes on all of the inner planets including this one about Mercury.

You Could Fit All the Planets Between the Earth and the Moon

You could fit all the planets within the average distance to the Moon.
You could fit all the planets within the average distance to the Moon.

I ran into this intriguing infographic over on Reddit that claimed that you could fit all the planets of the Solar System within the average distance between the Earth and the Moon.

I’d honestly never heard this stat before, and it’s pretty amazing how well they tightly fit together.

But I thought it would be a good idea to doublecheck the math, just to be absolutely certain. I pulled my numbers from NASA’s Solar System Fact Sheets, and they’re a little different from the original infographic, but close enough that the comparison is still valid.

Planet Average Diameter (km)
Mercury 4,879
Venus 12,104
Mars 6,771
Jupiter 139,822
Saturn 116,464
Uranus 50,724
Neptune 49,244
Total 380,008

The average distance from the Earth to the Moon is 384,400 km. And check it out, that leaves us with 4,392 km to spare.

So what could we do with the rest of that distance? Well, we could obviously fit Pluto into that slot. It’s around 2,300 km across. Which leaves us about 2,092 km to play with. We could fit one more dwarf planet in there (not Eris though, too big).

The amazing Wolfram-Alpha can make this calculation for you automatically: total diameter of the planets. Although, this includes the diameter of Earth too.

A nod to CapnTrip on Reddit for posting this.

Astrophotos: Spectacular Venus-Jupiter Conjunction Graces the Dawn

A panoramic view of the Venus Jupiter Conjunction on August 17, 2014, taken from the Cairns Esplanade in Queensland Australia. Credit and copyright: Joseph Brimacombe.

The closest planetary conjunction of the year graced the skies this morning, and astrophotographers were out in force to marvel at the beauty. The duo were just 11.9’ apart, less than half the diameter of a Full Moon. Also joining the view was M44, the Beehive Cluster. We start with this gorgeous shot from Queensland, Australia by one of our longtime favorite astrophotographers, Joseph Brimacombe.

But wait… there’s more! Much more! See below:

The Jupiter and Venus conjunction on August 18, 2014 along with the Beehive Cluster. Credit and copyright: Tom Wildoner.
The Jupiter and Venus conjunction on August 18, 2014 along with the Beehive Cluster. Credit and copyright: Tom Wildoner.
Telescopic view of Venus and Jupiter in the morning sky over Lahore, Pakistan. Shot with a Nikon D5100. Credit and copyright: Roshaan Bukhari.
Telescopic view of Venus and Jupiter in the morning sky over Lahore, Pakistan. Shot with a Nikon D5100. Credit and copyright: Roshaan Bukhari.
Beautiful conjunction of Jupiter and Venus over the Appennines on August 18, 2014. The foreground in the image shows the Peligna Valley in central Italy and the city of Sulmona. Credit and copyright: Giuseppe Petricca
Beautiful conjunction of Jupiter and Venus over the Appennines on August 18, 2014. The foreground in the image shows the Peligna Valley in central Italy and the city of Sulmona. Credit and copyright: Giuseppe Petricca
Jupiter-Venus-M44 conjunction on August 18, 2014. Image taken with Canon EOS 50D, through Skywatcher ED80.  Credit and copyright:  Zoran Novak.
Jupiter-Venus-M44 conjunction on August 18, 2014. Image taken with Canon EOS 50D, through Skywatcher ED80. Credit and copyright: Zoran Novak.
Close approach of Venus and Jupiter with M44 in the same field on August 18, 2014 over Payson, Arizona. Shot with a Canon XTi DSLR, 5 seconds exposure, ISO 400, 4" f/4.5 Newtonian. Credit and copyright: Chris Schur.
Close approach of Venus and Jupiter with M44 in the same field on August 18, 2014 over Payson, Arizona. Shot with a Canon XTi DSLR, 5 seconds exposure, ISO 400, 4″ f/4.5 Newtonian. Credit and copyright: Chris Schur.
Conjunction between the planets Venus(top) and Jupiter (bottom) as seen from London just before dawn on 18th August 2014. Credit and copyright: Roger Hutchinson.
Conjunction between the planets Venus(top) and Jupiter (bottom) as seen from London just before dawn on 18th August 2014. Credit and copyright: Roger Hutchinson.
Tight grouping of Venus and Jupiter,  captured at twilight on an 18 day old moon, one can see the two planets less than 1 degree apart in the sky. This image was captured at Damdama Lake, Haryana, India. Credit and copyright:  Rishabh Jain.
Tight grouping of Venus and Jupiter,
captured at twilight on an 18 day old moon, one can see the two planets less than 1 degree apart in the sky. This image was captured at Damdama Lake, Haryana, India. Credit and copyright: Rishabh Jain.
When Venus and Jupiter were almost touching in the sky! August 18, 2014 over  Königswinter-Heisterbacherrott in Germany. Credit and copyright: Daniel Fischer.
When Venus and Jupiter were almost touching in the sky! August 18, 2014 over Königswinter-Heisterbacherrott in Germany. Credit and copyright: Daniel Fischer.
Venus and Jupiter 1/2 degree apart low in the pink twilight at lower left, with the waning crescent Moon near Aldebaran at upper right, taken from Alberta Canada on August 18, 2014 at dawn, looking due east. This is a single 1 second exposure at f/4 with the 16-35mm lens and Canon 6D at ISO 800. Credit and copyright: Alan Dyer/Amazing Sky Photography.
Venus and Jupiter 1/2 degree apart low in the pink twilight at lower left, with the waning crescent Moon near Aldebaran at upper right, taken from Alberta Canada on August 18, 2014 at dawn, looking due east. This is a single 1 second exposure at f/4 with the 16-35mm lens and Canon 6D at ISO 800. Credit and copyright: Alan Dyer/Amazing Sky Photography.
Venus-Saturn conjunction on August 18, 2014, as see from Topaz Lake on the California - Nevada border. Credit and copyright: Jeff Sullivan/Jeff Sullivan Photography.
Venus-Saturn conjunction on August 18, 2014, as see from Topaz Lake on the California – Nevada border. Credit and copyright: Jeff Sullivan/Jeff Sullivan Photography.
A sample of four images in various locations/moments at Pescara, Italy. Credit and copyright: Marco Di Lorenzo.
A sample of four images in various locations/moments at Pescara, Italy. Credit and copyright: Marco Di Lorenzo.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Comet Jacques Is Back! Joins Venus and Mercury at Dawn

Will you see it? Comet Jacques will pass about 3.5 degrees north of brilliant Venus tomorrow morning July 13. This map shows the sky facing northeast about 1 hour before sunrise. Stellarium

Comet C/2014 E2 Jacques has returned! Before it disappeared in the solar glow this spring, the comet reached magnitude +6, the naked eye limit. Now it’s back at dawn, rising higher each morning as it treks toward darker skies. Just days after its July 2 perihelion, the fuzzball will be in conjunction with the planet Venus tomorrow morning July 13. With Mercury nearby, you may have the chance to see this celestial ‘Rat Pack’ tucked within a 8° circle.

First photo of Comet Jacques on its return to the morning sky taken on July 7. Credit: Gerald Rhemann
First photo of Comet Jacques on its return to the morning sky taken on July 11. Two tails are visible – a short, dust tail pointing to the lower left of the coma and longer gas or ion tail to the right. Credit: Gerald Rhemann

While I can guarantee you’ll see Venus and probably Mercury (especially if you use binoculars), morning twilight and low altitude will undoubtedly make spotting Comet Jacques challenging. A 6-inch telescope might nail it. Look for a small, fuzzy cloud with a brighter core against the bluing sky. Patience is the sky observer’s most useful tool. It won’t be long before the comet’s westward motion combined with the seasonal drift of the stars will loft it into darkness again.

Use this map to follow Comet Jacques as it moves west across Taurus and Auriga over the next few weeks. Planet positions are shown for July 13 with stars to magnitude +6. Jacques' position is marked every 5 days. Source: Chris Mariott's SkyMap
Use this map to follow Comet Jacques as it moves west across Taurus and Auriga over the next few weeks. Planet positions are shown for July 13 with stars to magnitude +6. Jacques’ position is marked every 5 days. Click to enlarge. Source: Chris Mariott’s SkyMap

A week from now, when the moon’s slimmed to half, the comet will be nearly twice as high and should be easily visible in 50mm binoculars at the start of morning twilight.

Comet Jacques is expected to remain around magnitude +6 through the remainder of July into early August and then slowly fade. It will be well-placed in Perseus at the time of the Perseid meteor shower on Aug. 12-13. Closest approach to Earth occurs on August 29 at 52.4 million miles (84.3 million km). Good luck and let us know if you see it.

Beautiful Astrophotos: Crescent Moon and Venus Rising

The waning crescent Moon below Venus, rising in the east on June 24, 2014 as seen from home over the flat prairie horizon of southern Alberta, Canada. Credit and copyright: Alan Dyer.

Did you see the crescent Moon near a bright star on Tuesday morning this week? Many of our Flickr group astrophotographers captured gorgeous shots of the two together in the sky, including this eye-candy image from Alan Dyer from Canada. Just take a look!

A beautiful conjunction between the Moon, the very bright planet Venus, and the easily recognizable open star cluster of the Pleiades from central Italy on the morning of June 24, 2014. Credit and copyright: Giuseppe Petricca.
A beautiful conjunction between the Moon, the very bright planet Venus, and the easily recognizable open star cluster of the Pleiades from central Italy on the morning of June 24, 2014. Credit and copyright: Giuseppe Petricca.
The waning crescent Moon and Venus as seen from the UK on June 24, 2014. Credit and copyright: Sculptor Lil on Flickr.
The waning crescent Moon and Venus as seen from the UK on June 24, 2014. Credit and copyright: Sculptor Lil on Flickr.
Moon and Venus Conjunction approximately 1 hour before sunrise on 24th June 2014. Looking east over central London with Canary Wharf on the horizon. Credit and copyright: Roger Hutchinson.
Moon and Venus Conjunction approximately 1 hour before sunrise on 24th June 2014. Looking east over central London with Canary Wharf on the horizon. Credit and copyright: Roger Hutchinson.
Venus and Waning Crescent Moon on June 24, 2014. Credit and copyright: Stephen Rahn.
Venus and Waning Crescent Moon on June 24, 2014. Credit and copyright: Stephen Rahn.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Amazing Manual Trailing of Sirius and More Astrophotos from Pakistan

The colorful star Sirius in a 2-second exposure using a manual trailing technique. Credit and copyright: Roshaan Bukhari.

Ever notice how the brilliant star Sirius appears to change colors right before your eyes? Astrophotographer Roshaan Bukhari from Pakistan wanted to see for himself how this twinkling star changes in color due to the effects of our atmosphere as its light gets refracted and he did a little experiment with his telescope and camera. What resulted was a unique and colorful astrophoto!

“I pointed my telescope to sharply focus on Sirius and put my DSLR camera to 2 second exposure while holding it near the eyepiece and focusing Sirius from the camera viewfinder as well,” Roshaan told Universe Today via email. “I started shaking the telescope in a circular manner by holding it from the eyepiece so that Sirius was dancing all over the eyepiece in an ‘O’ shape. That’s when I pressed the camera shutter button and the shutter remained open for 2 seconds, recording the colours and the pattern of Sirius within the eyepiece.”

Roshaan said he did enhance the contrast to bring the trails out more clearly, but the color saturation and hues have not been altered in any way. The changes in color in just a two-second exposure are really amazing!

Roshaan shared how astronomy and astrophotography in Pakistan is becoming a “blooming field now” — which we are very happy to hear! “And I’m very happy to say that I am a part of it!” he said, adding, “I’m one of the biggest fans of Universe Today and have been listening to it’s podcasts on iTunes since i got my first iPhone back in 2008.”

Here are few more images from Roshaan Bukhari under Pakistan skies:

Two views of the the 13-day old Moon on  June 11, 2014 at  7 pm and 2 am local time, as seen from Lahore, Pakistan.  Credit and copyright: Roshaan Bukhari.
Two views of the the 13-day old Moon on June 11, 2014 at 7 pm and 2 am local time, as seen from Lahore, Pakistan. Credit and copyright: Roshaan Bukhari.

How does the look of the Moon change during the night? These images of the Moon — taken 7 hours apart — were shot through Roshaan’s telescope with his mobile phone camera using the handheld afocal method!

Phase of the moon at 7 pm was 96.8%, while at 2 am it was 97.5% (rate of change of lunar phase turns out to be 0.7% in 7 hours, figures estimated from Stellarium).

Roshaan said the quality of the images is not that great since he took them while there a lot of dust was up in the atmosphere due to some strong winds, but we think they look great!

The phases of Venus from November 2013 to January 2014. Credit and copyright: Roshaan Bukhari.
The phases of Venus from November 2013 to January 2014. Credit and copyright: Roshaan Bukhari.
A closeup of four craters that appear on the limb of the Moon. Credit and copyright: Roshaan Bukhari.
A closeup of four craters that appear on the limb of the Moon. Credit and copyright: Roshaan Bukhari.

Thanks to Roshaan for sharing his images from Pakistan.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.