Last night (June 10, 2013) the two innermost worlds of our Solar System visible were joined by a very slender waxing crescent Moon, just over two days after New phase (see our preview of the event here). Several of our readers managed to capture this beautiful twilight triple conjunction. Our lead image is from Adrian New, who went to the Municipal Airport in Castroville, Texas to view the conjunction. “There was a rotating beacon light that would illuminate the planes wing tips at intervals, so I would wait to trip the shutter to capture the effect,” New said via email. This image was taken with a Nikon D800 and a 24-70mm F/2.8 lens set at 70mm @ ISO 2000 and a 1/2 second exposure.
Giuseppe Petricca from the Tuscany region of Italy said he felt lucky to manage to photograph the conjunction, “because the clouds were ‘a bit’ in the way, but also contributed positively to give a nice frame to the whole conjunction.” Giuseppe used a Nikon P90 Bridge digital camera, ISO 100, f5.6, 1/3″. Processed later with Photoshop to increase contrast to enhance the two planets in the sky.
Just a reminder to keep looking at sunset for the elusive planet Mercury. As UT writer David Dickinson said in his preview article, if you’ve never seen Mercury, this week is a great time to try.
If you’ve never seen Mercury, this week is a great time to try.
Over the past few weeks, observers worldwide have been following the outstanding tight triple conjunction of Mercury, Venus and Jupiter low to the west at dusk.
Jupiter has exited the evening sky, headed for conjunction with the Sun on June 19th. I caught what was probably our last glimpse of Jupiter for the season clinging to the murky horizon through binoculars just last week. If you’re “Jonesin’ for Jove,” you can follow its progress this week through superior conjunction as it transits the Solar Heliospheric Observatory’s LASCO C3 camera.
This leaves the two innermost worlds of our fair solar system visible low to the west at dusk. And tonight, they’re joined by a very slender waxing crescent Moon, just over two days after New phase.
The evening of June 10th finds a 4% illuminated Moon passing just over 5 degrees (about 10 Full Moon diameters) south of Venus and Mercury. Venus will be the first to appear as the sky darkens, shining at magnitude -3.9 and Mercury will shine about 40 times fainter above it at magnitude +0.3.
Ashen light, also known as Earthshine will also be apparent on the darkened limb of the Moon. Another old-time term for this phenomenon is “the Old Moon in the New Moon’s Arms.” Ashen light is caused by sunlight being reflected off of the Earth and illuminating the nighttime Earthward facing portion of the Moon. Just how prominent this effect appears can vary depending on the total amount of cloud cover on the Earth’s Moonward facing side.
This week sets the stage for the best dusk apparition of Mercury for northern hemisphere viewers in 2013. Orbiting the Sun every 88 Earth days, we see Mercury either favorably placed east of the Sun in the dusk sky or west of the Sun in the dawn sky roughly six times a year. Mercury’s orbit is markedly elliptical, and thus not all apparitions are created the same. An elongation near perihelion, when Mercury is 46 million kilometers from the Sun, can mean its only 17.9 degrees away from the Sun as viewed from the Earth. An elongation near aphelion, 69.8 million kilometers distant, has a maximum angular separation of 27.8 degrees.
This week’s greatest elongation of 24.3 degrees occurs on June 12th. It’s not the most extreme value for 2013, but does have another factor going for it; the angle of the ecliptic. As we approach the solstice of June 21st, the plane of the solar system as traced out by the orbit of the Earth is at a favorable angle relative to the horizon. Thus, an observer from 35 degrees north latitude sees Mercury 18.4 degrees above the horizon at sunset, while an observer at a similar latitude in the southern hemisphere only sees it slightly lower at 16.9 degrees.
Venus and the Moon make great guides to locate Mercury over the next few nights. It’s said that Copernicus himself never saw Mercury with his own eyes, though this oft repeated tale is probably apocryphal.
We also get a shot at a skewed “emoticon conjunction” tonight, not quite a “smiley face” (: as occurred between Jupiter, Venus and the Moon in 2008, but more of a “? :” Stick around until February 13th, 2056 and you’ll see a much tighter version of the same thing! A time exposure of a pass of the International Space Station placed near Mercury and Venus could result in a planetary “meh” conjunction akin to a “/:” Hey, just throwing that obscure challenge out there. Sure, there’s no scientific value to such alignments, except as testimony that the universe may just have a skewed sense of humor…
Through the telescope, Venus currently shows a 10” diameter gibbous phase, while Mercury is only slightly smaller at 8” and is just under half illuminated. No detail can be discerned on either world, as a backyard telescope will give you the same blank view of both worlds that vexed astronomers for centuries. These worlds had to await the dawn of the space age to give up their secrets. NASA’s MESSENGER spacecraft entered a permanent orbit around Mercury in 2011, and continues to return some outstanding science.
Both planets are catching up to us from the far side of their orbits. Mercury will pass within 2 degrees of Venus on June 20th, making for a fine wide field view in binoculars.
And now for the wow factor of what you’re seeing tonight. The Moon just passed apogee on June 9th and is currently about 416,500 kilometers or just over one light second distant. Mercury meanwhile, is 0.86 astronomical units (A.U.), or almost 133 million kilometers, or about 7 light minutes away. Finally, Venus is currently farther away from the Earth than the Sun at 1.59 A.U.s, or about 13.7 light minutes distant.
All this makes for a great show in the dusk skies this week. And yes, lunar apogee just after New sets us up for the closest Full Moon of 2013 (aka the internet sensation known as the “Super Moon”) on June 23rd. More to come on that soon!
Triple planets (Venus/Jupiter/Mercury) conjunction over Mont-Saint-Michel, Normandy, France on May 26. Credit: Thierry Legault – www.astrophoto.fr Update: See expanded Conjunction astrophoto gallery below[/caption]
The rare astronomical coincidence of a spectacular triangular triple conjunction of 3 bright planets happening right now is certainly wowing the entire World of Earthlings! That is if our gallery of astrophotos assembled here is any indication.
Right at sunset, our Solar System’s two brightest planets – Venus and Jupiter – as well as the sun’s closest planet Mercury are very closely aligned for about a week in late May 2013 – starting several days ago and continuing throughout this week.
And, for an extra special bonus – did you know that a pair of spacecraft from Earth are orbiting two of those planets?
Have you seen it yet ?
Well you’re are in for a celestial treat. The conjunction is visible to the naked eye – look West to Northwest shortly after sunset. No telescopes or binoculars needed.
Just check out our Universe Today collection of newly snapped astrophoto’s and videos sent to Nancy and Ken by stargazing enthusiasts from across the globe. See an earlier gallery – here.
Throughout May, the trio of wandering planets have been gradually gathering closer and closer.
On May 26 and 27, Venus, Jupiter and Mercury appear just 3 degrees apart as a spectacular triangularly shaped object in the sunset skies – which
adds a palatial pallet of splendid hues not possible at higher elevations.
And don’t dawdle if you want to see this celestial feast. The best times are 30 to 60 minutes after sunset – because thereafter they’ll disappear below the horizon.
The sky show will continue into late May as the planets alignment changes every day.
On May 28, Venus and Jupiter close in to within just 1 degree.
And on May 30 & 31, Venus, Jupiter and Mercury will form an imaginary line in the sky.
Triple planetary conjunctions are a rather rare occurrence. The last one took place in May 2011. And we won’t see another one until October 2015.
Indeed the wandering trio are also currently the three brightest planets visible. Venus is about magnitude minus 4, Jupiter is about minus 2.
While you’re enjoying the fantastic view, ponder this: The three planets are also joined by two orbiting spacecraft from humanity. NASA’s MESSENGER is orbiting Mercury. ESA’s Venus Express is orbiting Venus. And NASA’s Juno spacecraft is on a long looping trajectory to Jupiter.
Send Ken you conjunction photos to post here.
And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013
…………….
Learn more about Conjunctions, Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations:
June 4: “Send your Name to Mars” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8:30 PM
June 11: “Send your Name to Mars” and “LADEE Lunar & Antares Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 730 PM.
Caption: Taken on 2013-05-23 from Salem, Missouri. Canon T1i, Nikkor 105mm lens. 297 1/4s at 1s interval. Images assembled by QuickTime Pro. Credit: Joseph Shuster
Images are starting to come in of the bright planetary conjunction in the western sky at dusk! Jupiter, Venus and Mercury are snuggling up together, and we’ve got a wonderful weekend coming up with alignments including three separate conjunctions and ever-changing triangular arrangements as the nights go by. Mercury and Venus pair up on Friday; Mercury and Jupiter on Sunday and Venus and Jupiter on Monday. See our preview article for more detailed info on how to see the planetary trio each night, and there are more images below:
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Planning a barbecue this weekend? You may want to top it off with a look at three bright planets shuttling about the western sky at dusk. Jupiter, Venus and Mercury gather for nearly a week of delightful alignments including three separate conjunctions staring right now. Mercury and Venus pair up on Friday; Mercury and Jupiter on Sunday and Venus and Jupiter on Monday. All three form a series of ever-changing triangular arrangements as the nights go by.
Brightest of the bunch is Venus followed by Jupiter and then Mercury. The key to seeing them all is a clear sky and unobstructed view of the west-northwest horizon. Best time for viewing is a half hour to 45 minutes after sunset. Although the diagrams make the planets look like largish disks, difference in size is a device to show their brightness. Bigger means brighter.
Mercury gradually climbs higher in the coming days, Venus will remain in nearly the same spot and Jupiter slowly drops off toward the horizon. Seeing three planets bunch up isn’t rare, but it is unusual – all the more reason to go for a look if your skies are clear. Alignments like this occur because all 8 planets lie in essentially the same flat plane. As we look across the solar system, sometimes near planets and far planets lie along the same line of sight and appear side-by-side in the sky. They may look close to each other but of course they’re millions of miles apart.
This week Venus is 154 million miles (248 million km) from Earth, Mercury 113 million (182 million km) and Jupiter a distant 562 million (904 million km). The planet position diagram above will give you a sense of their current arrangement in space.
Whenever you go planet-seeking in bright twilight, I always recommend bringing along a pair of binoculars. They penetrate haze and make finding these bright little dots much easier. Enjoy the show!
Has Venus finally come out of hiding? For the past couple months it’s kept close to the sun, hidden in its glare, but come Friday, sky watchers in mid-northern latitudes may get their first shot at seeing the planet’s return to the evening sky.
It won’t be easy, but you’ll have help from the knife-edged crescent moon. Like a spring bloom raising its head from the dark earth, Venus will poke just 4 degrees above the western horizon a half hour after sunset. The moon will be about 2 degrees to the lower left of the planet. Seeing both requires a wide open view to the west and a clean, cloudless sky. It also helps to know when the sun sets for your location – easily found by clicking HERE.
Take along a pair of binoculars. They’ll help fish out both moon and planet in the bright twilight sky. It’s also advantageous to arrive at your viewing spot a little early. Enjoy the sunset, and then take a minute to make sure you’re binoculars are focused at infinity. If you don’t, Venus will be a blur and much harder to find. I usually focus mine on a cloud or the very farthest thing out along the horizon.
Once you’re all set, point your binoculars in the sunset direction and slowly sweep back and forth. Venus will be a short distance to the left or south of the brightest glow remaining along the horizon. Since most binoculars have a field of view of 4 or 5 degrees, when you place the horizon at the bottom of the view, the moon should appear in the middle of the field and Venus up near the top. Look higher and lower and farther left and right to be thorough. Once spotted in binoculars, take the visual challenge and see if you can find it without optical aid.
If you succeed, you’ll be rewarded with an elegant eyeful. Swamped in skylight, Venus will appear unusually meek but still possess its classic fiery brilliance. The newborn crescent will float just a degree and a half (three full moon diameters) away. From the U.S. east coast, the moon will be just 24 hours old; from the west coast 27 hours. Seeing such a young moon is a rarity in itself, but in the company of Venus that much finer.
Let’s say conditions aren’t ideal and you miss the pair on Friday. Well, try again on Saturday. The moon will be higher and much easier to see. Use it as a bow to shoot an imaginary arrow horizon-ward to Venus. And did I mention Jupiter? The planet that cheerily lit up our winter nights is now departing in the west. Watch for it to have a close encounter with Venus on the nights of May 27-28.
With its perpetual clouds, Venus would be a most distressing planet to any skywatcher unfortunate enough to live there. Yet it’s those same clouds that make it the most brilliant planet in the solar system seen from Earth. Clouds reflect sunlight splendidly. Combined with Venus’ proximity to Earth, it’s no wonder the planet earned the title of goddess of love and beauty.
In the first 3 months of this year, Venus remained close to the sun in the morning sky and difficult to see. Then on March 28, it passed behind the sun on the opposite side of Earth’s orbit; astronomers call the lineup superior conjunction. Seen from Earth, Venus looked like a tiny full moon. We’re now about 6 weeks past conjunction and the planet has begun to peek out into the evening sky. At 98% illuminated, it still looks nearly full through a telescope, but that will change in the coming months as Venus approaches Earth in its speedier orbit. Watch for the goddess to grow larger in apparent size while at the same time slimming down her phase from full to half to crescent. Good luck getting re-acquainted this weekend!
Two amazing images from the Cassini spacecraft today: We know how brightly Venus shines in our own night sky; now here’s visual proof it shines brightly even in the skies above Saturn. In one image it shines so brightly that it is even visible looking through Saturn’s rings! But in this absolutely stunning shot, above, Venus appears as a morning star, just off the edge of the planet. From Cassini, you’re looking directly above the edge of Saturn’s G ring to see the white dot, which is Venus. Lower down, Saturn’s E ring makes an appearance, looking blue thanks to the scattering properties of the dust that comprises the ring. (A bright spot near the E ring is a distant star, the Cassini CICLOPS team says.)
This beautiful image was taken on January 4, 2013.
On average, Venus and Saturn are about 1,321,200,000 km (820,955,619 mi or 8.83 astronomical units) apart, so that’s a nice, long distance shot! Venus is brighter in Saturn’s skies than Earth is, however, because Venus is covered in thick sulfuric acid clouds, making it very bright.
And here’s the other great shot, showing Saturn and its rings in true color:
Venus is the white dot, just above and to the right of the image center. Again, its amazing that it shines through the rings.
This view looks toward the unilluminated side of the rings from about 17 degrees below the ring plane, and was taken in visible light (and it is a true-color image) with the Cassini spacecraft wide-angle camera on Nov. 10, 2012.
In an email about these images, Cassini imaging team lead Carolyn Porco said that even though Venus reaches nearly 900 degrees Fahrenheit (500 degrees Celsius) and has a surface pressure 100 times that of Earth’s, Venus is considered a twin of our planet because of their similar sizes, masses, rocky compositions and close orbits.
And so, she pointed out, “Think about Venus the next time you find yourself reveling in the thriving flora, balmy breezes, and temperate climate of a lovely day on Earth, and remember: you could be somewhere else!”
This brief quote by the late Carl Sagan is wonderfully illustrated in the beautiful and poignant short film “Stardust,” directed by Mischa Rozema of Amsterdam-based media company PostPanic. Using actual images from space exploration as well as CGI modeling, Stardust reminds us that everything we and the world around us are made of was created inside stars… and that, one day, our home star will once again free all that “stuff” back out into the Universe.
The film was made in memory of talented Dutch designer Arjan Groot, who died of cancer in July 2011 at the age of 39.
“I wanted to show the universe as a beautiful but also destructive place. It’s somewhere we all have to find our place within. As a director, making Stardust was a very personal experience but it’s not intended to be a personal film and I would want people to attach their own meanings to the film so that they can also find comfort based on their own histories and lives.”
– Mischa Rozema, director
Credits:
A PostPanic Production
Written & directed by Mischa Rozema
Produced by Jules Tervoort
VFX Supervisor: Ivor Goldberg
Associate VFX Supervisor: Chris Staves
Senior digital artists: Matthijs Joor, Jeroen Aerts
Digital artists: Marti Pujol, Silke Finger, Mariusz Kolodziejczak, Dieuwer Feldbrugge, Cara To, Jurriën Boogert
Camera & edit: Mischa Rozema
Production: Ania Markham, Annejes van Liempd
Audio by Pivot Audio , Guy Amitai
Featuring “Helio” by Ruben Samama
Copyright 2013 Post Panic BV, All rights reserved
In the grand scheme of the universe, nothing is ever wasted and it finds comfort in us all essentially being Stardust ourselves. Voyager represents the memories of our loved ones and lives that will never disappear.
If you’ve ever wanted to see what it’s like to buzz Venus like only a spacecraft can, here’s your chance: this is a video animation of images taken by ESA’s Venus Express as it makes a pole-to-pole orbit of our neighboring world.
Captured in ultraviolet wavelengths, the images were acquired by the spacecraft’s Venus Monitoring Camera last January over a period of 18 hours. It’s truly a “day in the life” of Venus Express!
From ESA’s description of the video:
We join the spacecraft from a staggering 66,000 km above the south pole, staring down into the swirling south polar vortex. From this bird’s-eye view, half of the planet is in darkness, the ‘terminator’ marking the dividing line between the day and night sides of the planet.
Intricate features on smaller and smaller scales are revealed as Venus Express dives to just 250 km above the north pole and clouds flood the field of view, before regaining a global perspective as it climbs away from the north pole.
The observed pattern of bright and dark markings is caused by variations in an unknown absorbing chemical at the Venus cloud tops.
False-color image of cloud features on Venus. Captured by Venus Express from a distance of 30,000 km (18,640 miles) on December 8, 2011. (ESA/MPS/DLR/IDA)
Artist’s impression of an active volcano on Venus (ESA/AOES)
Incredibly dense, visually opaque and loaded with caustic sulfuric acid, Venus’ atmosphere oppresses a scorched, rocky surface baking in planet-wide 425 ºC (800 ºF) temperatures. Although volcanoes have been mapped on our neighboring planet’s surface, some scientists believe the majority of them have remained inactive — at least since the last few hundreds of thousands of years. Now, thanks to NASA’s Pioneer Venus and ESA’s Venus Express orbiters, scientists have nearly 40 years of data on Venus’ atmosphere — and therein lies evidence of much more recent large-scale volcanic activity.
The last six years of observations by Venus Express have shown a marked rise and fall of the levels of sulfur dioxide (SO2) in Venus’ atmosphere, similar to what was seen by NASA’s Pioneer Venus mission from 1978 to 1992.
These spikes in SO2 concentrations could be the result of volcanoes on the planet’s surface, proving that the planet is indeed volcanically active — but then again, they could also be due to variations in Venus’ complex circulation patterns which are governed by its rapid “super-rotating” atmosphere.
“If you see a sulphur dioxide increase in the upper atmosphere, you know that something has brought it up recently, because individual molecules are destroyed there by sunlight after just a couple of days,” said Dr. Emmanuel Marcq of Laboratoire Atmosphères in France, lead author of the paper, “Evidence for Secular Variations of SO2 above Venus’ Clouds Top,” published in the Dec. 2 edition of Nature Geoscience.
“A volcanic eruption could act like a piston to blast sulphur dioxide up to these levels, but peculiarities in the circulation of the planet that we don’t yet fully understand could also mix the gas to reproduce the same result,” added co-author Dr Jean-Loup Bertaux, Principal Investigator for the instrument on Venus Express.
The rise and fall of sulphur dioxide in the upper atmosphere of Venus over the last 40 years, expressed in units of parts per billion by volume. Credits: Data: E. Marcq et al. (Venus Express); L. Esposito et al. (earlier data); background image: ESA/AOES
Because Venus’ dense atmosphere whips around the planet at speeds of 355 km/hour (220 mph), pinpointing an exact source for the SO2 emissions is extremely difficult. Volcanoes could be the culprit, but the SO2 could also be getting churned up from lower layers by variations in long-term circulation patterns.
Venus has over a million times the concentration of sulfur dioxide than Earth, where nearly all SO2 is the result of volcanic activity. But on Venus it’s been able to build up, kept stable at lower altitudes where it’s well shielded from solar radiation.
Regardless of its source any SO2 detected in Venus’ upper atmosphere must be freshly delivered, as sunlight quickly breaks it apart. The puzzle now is to discover if it’s coming from currently-active volcanoes… or something else entirely.
“By following clues left by trace gases in the atmosphere, we are uncovering the way Venus works, which could point us to the smoking gun of active volcanism,” said Håkan Svedhem, ESA’s Project Scientist for Venus Express.