New measurements from ESA’s Venus Express spacecraft shows that Venus’ rotation rate is about 6.5 minutes slower than previous measurements taken 16 years ago by the Magellan spacecraft. Using infrared instruments to peer through the planet’s dense atmosphere, Venus Express found surface features weren’t where the scientists expected them to be.
“When the two maps did not align, I first thought there was a mistake in my calculations as Magellan measured the value very accurately, but we have checked every possible error we could think of,” said Nils Müller, a planetary scientist at the DLR German Aerospace Centre, lead author of a research paper investigating the rotation.
[/caption]
Using the VIRTIS infrared instrument, scientists discovered that some surface features were displaced by up to 20 km from where they should be given the accepted rotation rate as measured by the Magellan orbiter in the early 1990s.
Over its four-year mission, Magellan determined the length of the day on Venus as being equal to 243.0185 Earth days. But the data from Venus Express indicate the length of the Venus day is on average 6.5 minutes longer.
What could cause the planet to slow down? One possibility may be the raging weather on Venus. Recent atmospheric models have shown that the planet could have weather cycles stretching over decades, which could lead to equally long-term changes in the rotation period. The most important of those forces is due to the dense atmosphere – more than 90 times the pressure of Earth’s and high-speed weather systems, which are believed to change the planet’s rotation rate through friction with the surface.
Earth experiences a similar effect, where it is largely caused by wind and tides. The length of an Earth day can change by roughly a millisecond and depends seasonally with wind patterns and temperatures over the course of a year.
But a change of 6.5 minutes over a little more than a decade is a huge variation.
Other effects could also be at work, including exchanges of angular momentum between Venus and the Earth when the two planets are relatively close to each other. But the scientists are still working to figure out the reason for the slow down.
These detailed measurements from orbit are also helping scientists determine whether Venus has a solid or liquid core, which will help our understanding how the planet formed and evolved. If Venus has a solid core, its mass must be more concentrated towards the center. In this case, the planet’s rotation would react less to external forces.
“An accurate value for Venus’ rotation rate will help in planning future missions, because precise information will be needed to select potential landing sites,” said Håkan Svedhem, ESA’s Venus Express project scientist.
Venus Express will keep monitoring the planet to determine if the rate of rotation continues to change.
Mystery diamond-shape “object” entering the field-of-view of the HI2 telescope on STEREO Behind around December 26, 2011. Credit: NASA
The STEREO (Solar TErrestrial RElations Observatory) is a two-year mission conducted by NASA. It employs nearly identical twin telescopes – one positioned ahead of Earth’s orbit and the other behind – designed to study the Sun’s activities spectroscopically. However, it can sometimes pick up some very unusual findings! On December 26, 2011, the STEREO Behind Observatory’s HI2 telescope captured an ambiguous triangle entering the field of view and moving from right to left just above the trapezoidal occulter as seen in the above movie. Just what is this “thing”?!
Before you get ready to call the men in black, know that there is a logical answer… and it comes into play on the opposite side of the STEREO image. Play the movie again and watch. (It’s a bit more obvious in this close-up view.) Just as the weird triangle begins its approach, you’ll notice the dazzling Venus enters the field of view of the HI2-B at the same time to the lower left. As you watch, you’ll see they keep exactly the same time – in opposite – across the detector image. This isn’t just a chance happening… it’s a naturally-occurring internal reflection caused by Venus’ brilliance in the telescope’s optics. It might be exciting for the moment, but it’s nothing that hasn’t happened in the past. Just check out these great STEREO Reflections of Earth, and all sorts of other cool images on the STEREO Image Artifacts pages.
[/caption]
What else can be seen? As you can tell from this photograph, Earth is also starring in the show, but doesn’t come in as striking as Venus. What’s more you can also see the tail of Comet Lovejoy streaking in from the left just above Venus towards the end of the movie.
As 2011 is drawing to a close, the festive season is here and many of us are winding down and looking forward to the holidays. But this is a great time to look ahead to 2012 and pencil into our calendar and diaries the top astronomical events we don’t want to miss next year.
2012 is going to be a great year for astronomy observing, with some rare and exciting things taking place and a good outlook with some of the regular annual events.
So what top wonders should we expect to see and what will 2012 bring?
Conjunction of Venus and Jupiter
On March 15th the Planets Venus and Jupiter will be within 3 degrees and very close to each other in the early evening sky. This will be quite a spectacle as both planets are very bright (Venus being the brightest) and the pair will burn brightly together like a pair of alien eyes watching us after the Sun sets.
This conjunction (where planets group close together as seen from Earth) will be a fantastic visual and photographic opportunity, as it’s not often you get the brightest Planets in our Solar System so close together.
Transit of Venus
For many, the transit of Venus is the year’s most anticipated astronomical event and it takes place on June 5th – 6th. The Planet Venus will pass between the Earth and the Sun and you will see Venus (a small black circle) slowly move across, or “transit” the disc of the Sun.
Transits of Venus are very rare and only a few have been witnessed since the dawn of the telescope. Be sure not to miss this very rare event as the next one isn’t visible for over another 100 years from now in 2117 and the next after that is in 2125.
The full transit of Venus in 2012 will be visible in North America, the northwest part of South America, Western Pacific, North East Asia, Japan, Australia and New Zealand. Other parts of the world will see a partial transit such as observers in the UK, who will only be able to see the last part of the transit as the Sun rises.
First contact will be at 22:09 UT and final contact will be at 04:49 UT
Take note! You have to use the right equipment for viewing the Sun, such as eclipse glasses, solar filters, or projection through a telescope. Never ever look directly at the Sun and never look at it through a normal telescope or binoculars – You will be permanently blinded! The transit of Venus will be a very popular event, so contact your local astronomy group and see if they are holding an event to celebrate this rare occasion.
Meteor Showers
2011 was a poor year for meteor showers due to the presence of a largely illuminated Moon on all of the major showers; this prevented all but the brightest meteors being seen.
In contrast 2012 brings a welcome respite from the glare of the Moon as it gives little or no interference with this year’s major showers. The only other issue left to contend with is the weather, but if you have clear skies on the evenings of these celestial fireworks, you are in for a treat.
The Quadrantid Meteor Shower peak is narrow and just before dawn on January 4th this shower is expected to have a peak rate (ZHR) of around 80 meteors per hour.
The Perseid Meteor Shower peak is fairly broad with activity increasing on the evenings of the August 9th and 10th with the showers peak on the morning of the 12th. Perseids are the most popular meteor shower of the year as it tends to be warm and the shower has very bright meteors and fireballs, with rates of 100+ an hour at its peak.
The Geminid Meteor Shower is probably the best meteor shower of the year with high rates of slow bright meteors. The peak is very broad and rates of 100+ meteors per hour can be seen. The best time to look out for Geminids is on the evenings of the 12th to 14th December, but they can be seen much earlier or later than the peak.
If you want to find out more and enjoy the meteor showers of 2012, why not join in with a meteorwatch and visit meteorwatch.org
Jupiter and the Moon
European observers are in for a very rare treat as the Moon briefly hides the planet Jupiter on the morning of July 15th. This “lunar occultation” can be seen from southern England and parts of Europe at approximately 1:50am UT (dependant on location) and the planet re-emerges from the dark lunar limb at approximately 3:10am UT.
This is a great chance to watch this rare and bright event, and it will also be a fantastic imaging opportunity.
Annular Eclipse
American observers will have treat on May 20th with an annular eclipse of the Sun. The eclipse will be visible from many western US states and a partial eclipse visible from most of North America.
Because the Moon’s orbit is not a perfect circle and is slightly elliptical, it moves closer and further away from us slightly in its orbit by 13% and on July 15th it is at its furthest point away from the Earth as it passes in front of the Sun.
Normally the Moon covers the entire disc of the Sun and creates a total solar eclipse, but because the Moon is at its furthest point in its orbit on the 15th, we get an annular eclipse, where we can still see a ring of bright light around the Sun, but we don’t get totality.
The eclipse starts roughly at 6:20pm local time for the Western US states and lasts for four and a half minutes.
As mentioned earlier; never, ever look at the Sun without proper protection such as eclipse glasses or filters for equipment! This can damage your eyes and permanently blind you. This is the same for cameras; the sensitive chips inside can be damaged.
The World Not Ending
Finally we get to December 21st, in which astronomy-minded folks will celebrate the solstice. But in case you haven’t heard, some have prophesied the end of the world, saying the Mayan calendar ends. This has been the subject of much discussion, comedy and media coverage, and it has even been made into films.
Will the Antichrist press the red button and will there be the Rapture? Will the Earth reverse its magnetic poles, or will we get wiped out by a solar flare, rogue comet or asteroid?
Nope, probably not. You can read our entire series which explains why this whole 2012 end-of-the-world craze is complete hokum.
All I know is 2012 is going to be a great year for astronomy with some very interesting, rare events taking place, with many more regular events to see, as well.
In the mid-1960s, before any Apollo hardware had flown with a crew, NASA was looking ahead and planning its next major programs. It was a bit of a challenge. After all, how do you top landing a man on the Moon? Not wanting to start from scratch, NASA focused on possible missions that would use the hardware and software developed for the Apollo program. One mission that fit within these parameters was a manned flyby of our cosmic twin, Venus.
As one of our neighbouring planets, a mission to Venus made sense; along with Mars, it’s the easiest planet to reach. Venus was also a mystery at the time. In 1962, the Mariner 2 spacecraft became the first interplanetary probe. It flew by Venus, gathered data on its temperature and atmospheric composition before flying off into a large heliocentric orbit. But there was more to learn, making it a destination worth visiting.
But beyond being relatively practical with great potential for scientific return, a manned mission to Venus would prove that NASA’s spacecraft and astronauts were up for the challenges of long-duration interplanetary flight. In short, it would give NASA something exciting to do.
The mission proposal was published early in 1967. It enhanced the Apollo spacecraft with additional modules, then took the basic outline of an Apollo mission and aimed it towards Venus instead of the Moon.
The crew would launch on a Saturn V rocket in November of 1973, a year of minimal solar activity. They would reach orbit in the same Command and Service Modules (CSM) that took Apollo to the Moon. Like on Apollo, the CSM would provide the main navigation and control for the mission.
Going to the Moon, Apollo missions had the crew turn around in the CSM to pull the LM out of its launch casing. On the mission to Venus, the crew would do the same, only instead of an LM they would dock and extract the Environmental Service Module (ESM). This larger module would supply long-duration life support and environmental control and serve as the main experiment bay.
With these two pieces mated, the upper S-IVB stage of Saturn V would propel the spacecraft towards Venus. Once its fuel store was spent, the crew would repurpose the S-IVB into an additional habitable module. Using supplies stored in the ESM, they would turn the rocket stage into their primary living and recreational space. On its outside, an array of solar panels would power each piece of the spacecraft throughout the mission.
The crew would spend 123 days traveling to Venus. Ten hours of each day would be dedicated to science, mainly observations of the solar system and beyond with a telescope mounted in the ESM. UV, X-ray, and infrared measurements could create a more complete picture of our corner of the universe. The rest of each day would be spent sleeping, eating, exercising, and relaxing — a full two hours of every day would be dedicated to unstructured leisure, a first for astronauts.
Like Mariner 2 before them, the crew would flyby Venus rather than go into orbit. They would only have 45 minutes to do close optical observations and deploy probes that would send back data on the Venusian atmosphere in realtime.
After the flyby, the spacecraft would swing around Venus and start its 273 day trip back to Earth. Like on an Apollo lunar mission, the crew would transfer back into the Command Module before reentry taking anything that had to return to Earth with them. They would jettison the S-IVB, the ESM, and the Service Module, switch the CM to battery power, and plunge through the atmosphere. Around December 1, 1974, they would splashdown somewhere in the Pacific Ocean.
Though worked out in great detail, the proposal was a thought experiment rather than something NASA was seriously considering. Nevertheless, Apollo-era technology would have managed the mission.
In 1989, meteorologists discovered sprites. Not the spirits, elves, or pixies that pepper Shakespearean comedies but their equally elusive electrical namesakes. Lightning sprites are large scale electrical discharges inside the clouds above storms that make the upper atmosphere glow, sort of like a fluorescent lightbulb.
Meteorologists have already determined that sprites likely aren’t unique to Earth. In fact, this elusive form of lightning might be common throughout the solar system. Now, researchers at Tel Aviv University are asking whether the presence of sprites on other planets could indicate the presence of organic material in their atmospheres.
Though not an uncommon phenomena, sprites are incredibly hard to find and observe. They can only be captured with highly sensitive high speed cameras. Sprites occur in the Earth’s Mesosphere, layer between the stratosphere and the thermosphere – about 50 km (31 miles) to 90 km (56 miles) high. At this altitude, the gases that make up our atmosphere are much thinner and unable to hold heat from the Sun making the average temperature a chilly 5°F (-15°C) to as low as -184°F (-120°C).
But gases at this altitude are still thick enough to slow meteors – this is where they burn up and create what we see as meteor showers. Gases in the mesosphere are also thick enough to light up with sprites, providing a window into the composition of our atmosphere. Sprites, which glow reddish-orange, indicate the kinds of molecules present in this layer of the atmosphere.
Lightning isn’t a rare occurrence in our solar system, which leads researchers to suspect sprites might be found on Jupiter, Saturn, and Venus – all planets with the right environment for strong electrical storms. Just like on Earth, sprites found on these planets could open a window in their atmospheric composition, conductivity, and possibly point to the presence of exotic compounds.
Jupiter and Saturn present the most exciting environments. Both gas giants experience lightening storms with flashes more than 1,000 as powerful as those found on Earth. It’s on these planets that Ph.D. student Daria Dubrovin, with her supervisors Prof. Colin Price of Tel Aviv University’s Department of Geophysics and Planetary Sciences and Prof. Yoav Yair at the Open University of Israel, is focussing on.
Dubrovin has re-created these planetary atmospheres in a lab to study the presence of sprites in space. Or, as she describes her work, “We make sprites in a bottle.” She hopes this will provide a new understanding of electrical and chemical processes on other planets.
What’s more, understanding lightning on other worlds could help researchers understand the possibility of life on other worlds. As Dubrovin points out, lightning is commonly accepted as the generator of organic molecules that turned early Earth’s ocean into the life-filled primordial soup. Increased study of lightning on other planets could give another clue into the presence of extraterrestrial life. Their research could easily be applied to exoplanets, not just bodies in our solar system.
A lightning storm on Saturn has Dubrovin pretty excited. It’s currently producing over 100 electrical flashes per second, a rare occurrence even within the planet’s volatile cloud layers. If researchers could successfully gather images of higher altitude sprites from the Cassini spacecraft (currently in orbit around Saturn), it would not only yield information on the storm below but also add to the general knowledge base of sprites and lightning on other planets.
Venus, Earth’s hotheaded neighbor, may have more variability in its weather patterns than previously believed. Using infrared data obtained by ground-based telescopes in Hawaii and Arizona researchers have found that Venus’ mesosphere and thermosphere are less consistent in temperature than layers closer to its surface.
But first let’s talk about Venus itself.
Possibly the most inhospitable of planets in our solar system, Venus is the victim of a runaway greenhouse effect. Our neighboring world is a virtual oven… with a rocky surface baked by 800ºF temperatures and crushed beneath the weight of its own incredibly dense atmosphere, standing “sea level” on Venus would be like being 3,300 feet underwater, just in terms of pressure per square inch. And as if the heat and pressure weren’t enough, Venus’ skies are full of clouds made of corrosive sulphuric acid, lit by bolts of lightning and and whipped along by hurricane-force planetwide winds. All Earth-based probes that have ever landed there only lasted moments on the surface before succumbing to Venus’ destructive environment.
Venus is, quite literally, hellish.
Unlike Earth, Venus does not have much of an axial tilt. This means there’s little, if any, seasonal variation on Venus. (Actually it does have a tilt… Venus is rotated almost completely upside-down relative to its poles, and so in effect still has very little axial tilt.) And since its cloud cover is so dense and it lacks a hydrologic cycle to move heat energy around, it pretty much stays at a constant level of “extreme broil” all across Venus’ surface.
Surface weather on Venus, although unpleasant, is consistent.
Yet based on an international team’s new research this is not the case higher up in Venus’ atmosphere. A new look at old data has uncovered changing weather patterns visible in infrared light at about 68 miles (110 kilometers) above the planet’s surface in the cold, clear air above the acid clouds.
“Any variability in the weather on Venus is noteworthy, because the planet has so many features to keep atmospheric conditions the same,” said Dr. Tim Livengood, a researcher with the National Center for Earth and Space Science Education and the University of Maryland, now stationed at NASA’s Goddard Space Flight Center in Greenbelt.
Dr. Theodor Kostiuk of NASA Goddard explains further: “Although the air over the polar regions in these upper atmospheric layers on Venus was colder than the air over the equator in most measurements, occasionally it appeared to be warmer. In Earth’s atmosphere, a circulation pattern called a ‘Hadley cell’ occurs when warm air rises over the equator and flows toward the poles, where it cools and sinks. Since the atmosphere is denser closer to the surface, the descending air gets compressed and warms the upper atmosphere over Earth’s poles. We saw the opposite on Venus.”
Many factors could be contributing to Venus’ upper-atmospheric variabilities, such as interactions between opposing winds blowing around the planet at over 200 mph, giant vortexes that churn around its poles, and possibly even solar activity, like solar storms and coronal mass ejections which may create turbulence in Venus’ upper atmosphere.
“The mesosphere and thermosphere of Venus are dynamically active. Wind patterns resulting from solar heating and east to west zonal winds compete, possibly resulting in altered local temperatures and their variability over time.”
– Lead author Dr. Guido Sonnabend, University of Cologne, Germany
The team also found that the temperatures of Venus’ atmosphere change over time, spanning weeks, months, years… even decades. Temperatures measured in 1990-91 are warmer than in 2009, and equatorial temperatures were even warmer in 2007.
“In addition to all these changes, we saw warmer temperatures than those predicted for this altitude by the leading accepted model,” said Kostiuk. “This tells us that we have lots of work to do updating our upper atmospheric circulation model for Venus.”
Even though Venus is compositionally similar to Earth and has a similar size as well, at some point in its history it lost all of its water to space and became the cloud-covered oven it is today. Studying Venus will help scientists learn how this may have happened and – hopefully! – learn how to prevent the same fate from ever befalling Earth.
The paper, led by Dr. Guido Sonnabend of the University of Cologne, Germany and co-authored by Drs. Livengood and Kostiuk, appeared July 23 in the online edition of the journal Icarus.
Editor’s note: We all want to explore other worlds in our solar system, but perhaps you haven’t considered the bizarre weather you’d encounter — from the blistering hurricane-force winds of Venus to the gentle methane rain showers of Saturn’s giant moon Titan. Science journalist Michael Carroll has written a guest post for Universe Today which provides peek at the subject matter for his new book, “Drifting on Alien Winds: Exploring the Skies and Weather of Other Worlds.”
It’s been a dramatic year for weather on Earth. Blizzards have blanketed the east coast, crippling traffic and power grids. Cyclone Tasha drenched Queensland, Australia as rainfall swelled the mighty Mississippi, flooding the southern US. Eastern Europe and Asia broke high temperature records. But despite these meteorological theatrics, the Earth’s conditions are a calm echo of the weather on other worlds in our solar system.
Take our nearest planetary neighbor, Venus. Nearly a twin of Earth in size, Venus displays truly alien weather. The hurricane-force Venusian winds are ruled not by water (as on Earth), but by battery acid. Sunlight tears carbon dioxide molecules (CO2) apart in a process called photodissociation. Leftover bits of molecules frantically try to combine with sulfur and water to become chemically stable, resulting acid hazes. Temperatures soar to 900ºF at the surface, where air is as dense as the Earthly oceans at a depth of X feet.
Venus is the poster child of comparative planetology, the study of other planets to help us understand our own. Earth’s simmering sibling has taught us about greenhouse gases, and gave us an even more immediate cautionary tale in 1978. The Pioneer Venus orbiter discovered that Venus naturally generates chlorofluorocarbons (CFCs) in its atmosphere. These CFCs were tearing holes in the planet’s ozone. At the same time, a wide variety of industries were preparing to use CFCs in insecticides, spray paints, and other aerosol products. Venus presented us with a warning that may have averted a planet-wide crisis.
In the same way, Mars has provided insights into long-term climate change. Its weather is a simplified version of our own. Locked within its rocks and polar caps lie records of changing climate over eons.
But fans of really extreme weather must venture further out, to the outer planets. Jupiter and Saturn are giant balls of gas with no solid surface, and are known as the “gas giants.” They are truly gigantic: over a thousand Earths could fit within Jupiter itself.
The skies of Jupiter and Saturn are dominated by hydrogen and helium, the ancient building blocks of the solar system. Ammonia mixes in to produce a rich brew of complex chemistry, painting the clouds of Jupiter and Saturn in tans and grays. Lightning bolts sizzle through the clouds, powerful enough to electrify a small city for weeks. Ammonia forms rain and snow in the frigid skies. Jupiter’s Great Red Spot is a centuries-old cyclone large enough to swallow three Earths. Saturn has its own bizarre storms: a vast hexagon-shaped trough of clouds races across the northern hemisphere. Over the south pole, a vast whirlpool gazes from concentric clouds like a Cyclops.
Beyond Jupiter and Saturn lie the “ice giants”, Uranus and Neptune. These behemoths host atmospheres of poisonous brews chilled to cryogenic temperatures. Methane tints Uranus and Neptune blue. Neptune’s clear air reveals a teal cloud deck. Hydrocarbon hazes tinge Uranus to a paler shade of blue-green. Neptune’s clear air is somewhat of a mystery to scientists. This may be because cloud-forming particles can’t stay airborne long enough to become visible clouds. Some scientists propose that Neptune’s abundant methane rains may condense so rapidly that within a few seconds tiny methane raindrops swell to something the size of a beachball. There are no clouds adrift, because methane rains out of the atmosphere too quickly.
One of the strangest cases of bizarre weather comes to us from Neptune’s moon Triton. Triton’s meager nitrogen air is tied to the freezing and thawing of polar ices, also composed of nitrogen. Triton’s entire atmosphere collapses twice a year, when it’s winter on one of the poles. At that time of year, all of Triton’s air migrates to the winter pole, where it freezes to the ground. The moon only has “weather” during the spring and fall; its atmosphere exists only during those seasons.
So, the next time you contemplate complaining about the heat, think of Venus. And if it’s blizzards you worry about, find comfort in Triton: at least our atmosphere doesn’t disappear in winter!
Our neighboring planet Venus really is a world of extremes; searing surface temperatures, crushing air pressure, sulfuric acid clouds…Venus pretty much pushes the envelope on every aspect of rocky-planet existence. And now here’s one more thing that made scientists do a double-take: a shape-shifting vortex swirling around Venus’ south pole!
The presence of a cyclonic storm around Venus’ poles – both north and south – has been known since Mariner 10’s pass in 1974 and then afterwards during the Pioneer Venus mission when a downwardly-spiraling formation of clouds over the planet’s north pole was imaged in infrared. It wasn’t until ESA’s Venus Express orbiter arrived in 2006 that the cyclone at the south pole was directly observed via the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument…and it proved to be much stranger than anything previously expected. Continue reading “A Varying Venusian Vortex”
Just to be clear, this answer to ‘which planet has the longest day’ is based on this criteria: a planets day is how long it takes it to complete one rotation on its axis. This is also referred to as its rotational period. So, Venus has the longest day of any planet in our solar system. It completes one rotation every 243 Earth days. Its day lasts longer than its orbit. It orbits the Sun every 224.65 Earth days, so a day is nearly 20 Earth days longer than its year.
Length Of A Day On The Planets In Our Solar System
Mercury: 58 days and 15 hours Venus: 243 days Mars: 24 hours, 39 minutes and 35 seconds Jupiter: 9.9 hours Saturn: 10 hours 45 minutes 45 seconds, but can only be approximated because of atmospheric density. Uranus: 17 hours, 14 minutes and 24 seconds Neptune: 16 hours, 6 minutes and 36 seconds, but it is a bit more complicated than that. The equator and poles rotate at different speeds. You would have to do more research on the planet to fully understand the varying day on Neptune.
Now, back to why the Venusian day is longer than its year. Venus is closer to the Sun; therefore, its orbit takes a shorter period of time than its rotation upon its axis. The planet also rotates in retrograde. That means it spins in the opposite direction of the Earth. If you were standing on Venus, you could see the Sun rise in the West and set in the East.
A manned Venus flyby mission was proposed in the late 1960s. The mission was planned to launch in late October or early November 1973, and would have used a Saturn V rocket to send three men. The flight would have lasted approximately one year. The spacecraft would have passed approximately 5,000 km from the surface about four months into the flight. There have been several unmanned probes and flybys of the planet, including MESSENGER and the Venus Express. Future proposed missions include the BepiColombo, Venus InSitu Explorer, and the Venera-D.
The Japan Aerospace Exploration Agency (JAXA) is now considering making a second attempt to insert the Akatsuki probe into Venus’ orbit one year earlier than originally planned, in five years instead of six. After a malfunctioning valve in the spacecraft’s fuel pressure system caused the engine to function abnormally, Akatsuki failed to enter Venus’ orbit on Dec. 7, 2010 as planned. JAXA had said the spacecraft’s orbit around the Sun would put it in position for another orbit insertion attempt in about six years. But because the spacecraft’s speed has slowed more than expected, the agency now says it may be possible to slowly decelerate Akatsuki even more and let Venus “catch up with it,” according to a report in the Mainichi Daily News. Therefore, an attempt to enter orbit may be made sometime in 2015. A quicker return to Venus is also advantageous in terms of the lifespan of the probe and its equipment.
“At the speed the probe was moving under our first retry plan, it would probably have been impossible to make the orbital insertion,” said a JAXA official, quoted in the Japanese online news site. “We hope to explore every possibility, and make an exploration of Venus a reality.”
After the original mission failure, JAXA had calculated that Akatsuki would make 11 trips around the Sun for every 10 Venus made, putting the next closest encounter between the spacecraft and planet sometime in December 2016 or January 2017. But subsequent examination of data showed Ataksuki’s engine power had dropped by almost 60 percent, slowing the spacecraft and making it possible to make a second attempt at entering orbit a year earlier. The bad news is that the slowdown is possibly caused by a malfunction in the fuel supply system or damage to the engine nozzle. If that is the case, the prospects for restoring full function are very low.
Additionally, if the engine nozzle has been weakened, it will be difficult to decelerate the Akatsuki enough for orbital insertion when it again closes with Venus. But after consultations with engineers, JAXA is now considering trying to decelerate the craft a little bit at a time, allowing it to make eight orbits around the sun before Venus catches up with it in five years.