What Color is Venus?

Venus. Image Credit: NASA/courtesy of nasaimages.org



Here’s a question: what color is Venus? With the unaided eye, Venus just looks like a very bright star in the sky. But spacecraft have sent back images of the cloud tops of Venus, and some have even returned images from the surface of Venus.

If you could actually fly out to Venus and look at it with your own eyes, you wouldn’t see much more than a bright white-yellowish ball with no features. You wouldn’t actually be able to see any of the cloud features that you can see in photographs of Venus. That’s because those photos are taken using different wavelengths of light, where differences in the cloud layers are visible. For example, the photo that accompanies this story was captured in the ultraviolet spectrum.

Although the atmosphere of Venus is almost entirely made up of carbon dioxide, the clouds that obscure our view to the surface are made of sulfur dioxide. These are opaque to visible light, and so we can’t see through them to the surface of Venus. These clouds actually rain droplets of sulfuric acid.

Surface of Venus by Venera.
Surface of Venus by Venera.

If you could get down beneath the cloud tops of Venus, you wouldn’t be able to see much either. That’s because the clouds are so thick that most of the light from the Sun is blocked before it reaches the surface. You would see a dim landscape, like you might see at twilight. The surface of the planet is littered with brownish-red volcanic rocks. The bright red color you see in the Soviet Venera images of Venus have been brightened to show more surface detail.

So, what color is Venus? Yellowish-white.

We’ve written several articles about the color of the planets for Universe Today. Here’s an article about the color of Mercury, and here’s an article about the color of Pluto.

If you’d like more info on Venus, check out Hubblesite’s News Releases about Venus, and here’s a link to NASA’s Solar System Exploration Guide on Venus.

We’ve also recorded an entire episode of Astronomy Cast all about Venus. Listen here, Episode 50: Venus.

When Was Venus Discovered?

Venus captured by Magellan.

Were you wondering when was Venus discovered? Actually, there’s no way to know. Venus is one of the 5 planets visible with the unaided eye. In fact, Venus is the brightest object in the night sky after the Sun and the Moon. When Venus is at its brightest, it even casts shadows. So even ancient people would have been aware of Venus, and so there’s no way to know who that first person was, and when it happened.

However, a better question might be to ask, when did we know that Venus was a planet? This happened about the same time that astronomers first realized the Earth was a planet too. In ancient times, astronomers used to think that the Earth was the center of the Universe, and everything orbited around it: the Sun, the Moon, the planets and the stars. One problem with this model was the strange behavior of the planets. Sometimes they would speed up, and then slow down, stop, and even go backwards in the sky.

But then in the 1500s, Nicolaus Copernicus developed his model of a Sun-centered Solar System. The Earth was just a planet, and all of the planets orbited around the Sun instead. This model explained how the planets could have such strange movements. Since the Earth is moving too, we’re really just seeing them from different perspective in they sky.

The first person to see Venus in a telescope was Galileo. Although he wasn’t able to resolve anything but a bright disk (astronomers can’t do any better today), he saw that Venus went through phases like the Moon. This was further evidence that Venus orbits around the Sun – closer than the Earth, and so we see it in various phases of illumination.

Because Venus is shrouded in clouds, astronomers weren’t able to get a better view of Venus until the first spacecraft arrived from Earth. The first spacecraft to visit Venus was NASA’s Mariner 2, which arrived at Venus in 1962. But even then the planet was still blocked by clouds. The Russian Venera landers were able to pierce through the clouds and landed on the surface to send back a few quick images of the planet’s surface. They showed a hellish world, with thick atmosphere, clogging clouds, and blasting heat, hot enough to melt lead. NASA’s Magellan spacecraft (launched in 1989) was equipped with a radar instrument that allowed it to pierce through the clouds on Venus and show the planet’s landscape, craters and volcanoes.

We’ve written many articles about the discovery of planets for Universe Today. Here’s an article about the discovery of Uranus, and here’s an article about the discovery of Neptune.

If you’d like more information on Venus, check out Hubblesite’s News Releases about Venus, and here’s a link to NASA’s Solar System Exploration Guide on Venus.

We’ve also recorded an entire episode of Astronomy Cast about Venus. Listen here, Episode 50: Venus.

Evening Star

Venus. Credit: NASA

[/caption]

Venus is also known as the evening star. It was given that name by ancient civilizations, such as the Greeks and Egyptians, who saw it in the sky. The planet was eventually named after the Roman goddess of love because of its beauty. Many ancient cultures have his planet with love and womanhood. Venus has been an important object in a number of different cultures including to the Babylonians and Mayans. The Mayans even used the movement of the planet to help create their complex calendar.

Venus is close to the Earth as well as the Sun. As soon as the Sun sets and it gets dark enough, Venus can often be seen in the sky. Because it seems In addition to being known as the evening star, Venus was also called the morning star because it could be seen for a few hours before the Sun grew too bright. The planet actually becomes brightest before the Sun rises or just after sunset. The ancient civilizations thought that the morning star and the evening star were separate celestial bodies. Pythagoras, the famous Greek mathematician, is believed to be the first person to realize that the morning and evening stars were actually the same object – Venus.

The Egyptians had two names for the planets because they thought it was actually two stars. The morning star was called Tioumoutri, and the evening star was known as Ouaiti. The Greeks called the evenings star Hesperos, the “star of the evening.” The Greeks called the morning star, Phosphoros “the Bringer of Light,” or Eosphoros, “the Bringer of Dawn.”

 Besides the Sun and Earth’s Moon, Venus is the brightest object in our Solar System. Its brightness is caused in part by the clouds of toxic gases that comprise its atmosphere. The sulfur dioxide and other elements in these clouds reflect light from the Sun causing the planet to shine.

Long after astronomers discovered that Venus was no longer the evening or morning star it has captivated the imagination of many. The swirling clouds that hid the surface of this shining planet from view were thought to shield a tropical paradise. Ironically, what many considered to be the most beautiful planet turned out to be a burning wasteland – the hottest planet in our Solar System. Another one of Venus’ many names is Earth’s twin because it is similar in size and mass to our own planet.

Universe Today has articles on the morning and evening star and the history of Venus.

For more information, you should take a look at Venus and an introduction to Venus.

Astronomy Cast has an episode on Venus.

References:
NASA History: Earth’s Sister and the Twilight Planet
NASA: Planets

Solar System Orbits

Take a look at the Solar System from above, and you can see that the planets make nice circular orbits around the Sun. But dwarf planet’s Pluto’s orbit is very different. It’s highly elliptical, traveling around the Sun in a squashed circle. And Pluto’s orbit is highly inclined, traveling at an angle of 17-degrees. This strange orbit gives Pluto some unusual characteristics, sometimes bringing it within the orbit of Neptune. Credit: NASA

[/caption]
One of the International Astronomical Union’s (IAU) requirements for a celestial body to be classified as a planet (or a dwarf planet) is that it orbits the Sun. All of the planets have different orbits, which affect many of the planets’ other characteristics.

Since Pluto became a dwarf planet, Mercury is the planet with the most eccentric orbit. The eccentricity of an orbit is the measurement of how different the orbit is from a circular shape. If an orbit is a perfect circle, its eccentricity is zero. As the orbit becomes more elliptical, the eccentricity increases. Mercury’s orbit ranges from 46 million kilometers from the Sun to 70 million kilometers from the Sun.

Venus, which is right next to Mercury, has the least eccentric orbit of any of the planet in the Solar System. Its orbit ranges between 107 million km and 109 million km from the Sun and has an eccentricity of .007 giving it a nearly perfect circle for its orbit.

Earth also has a relatively circular orbit with an eccentricity of .017. Earth has a perihelion of 147 million kilometers; the perihelion is the closest point to the Sun in an object’s orbit. Our planet has an aphelion of 152 million kilometers. An aphelion is the furthest point from the Sun in an object’s orbit.

Mars has one of the most eccentric orbits in our Solar System at .093. Its perihelion is 207 million kilometers, and it has an aphelion of 249 million kilometers.

Jupiter has a perihelion of 741 million kilometers and an aphelion of 778 million kilometers. Its eccentricity is .048. Jupiter takes 11.86 years to orbit the Sun. Although this seems a long time compared to the time our own planet takes to orbit, it is only a fraction of the time of some of the other planets’ orbits.

Saturn is 1.35 billion kilometers at its perihelion and 1.51 billion kilometers from the Sun at its furthest point. It has an eccentricity of .056. Since it was first discovered in 1610, Saturn has only orbited the Sun 13 times because it takes 29.7 years to orbit once.

Uranus is 2.75 billion miles from the Sun at its closest point and 3 billion miles from the Sun at its aphelion. It has an eccentricity of .047 and takes 84.3 years to orbit the Sun. Uranus has such an extreme axial tilt (97.8°) that rotates on its side. This causes radical changes in seasons.

Neptune is the furthest planet from the Sun with a perihelion of 4.45 billion kilometers and an aphelion of 4.55 billion kilometers. It has an eccentricity of .009, which is almost as low as Venus’ eccentricity. It takes Neptune 164.8 years to orbit the Sun.

Universe Today has articles on orbits of the planets and asteroid orbits.

For more information, check out articles on an overview of the Solar System and new planet orbits backwards.

Astronomy Cast has episodes on all the planets including Mercury.

References:
NASA: Transits of Mercury
NASA: Solar System Math
NASA: Mars, You’re So Complicated
NASA Solar System Exploration

Radius of the Planets

Size of the planets compared.

[/caption]

One way to measure the size of the planets is by radius. Radius is the measurement from the center of an object to the edge of it.

Mercury is the smallest planet with a radius of only 2,440 km at its equator. Mercury is not that much larger than the Moon, and it is actually smaller than some of our Solar System’s larger satellites, such as Titan. Despite Mercury’s small size, it is actually dense with higher gravity than you would expect for its size.

Venus has a radius of 6,052 kilometers, which is only a few hundred kilometers smaller than Earth’s radius. Most planets have a radius that is different at the equator than it is at the poles because the planets spin so fast that they flatten out at the poles. Venus has the same diameter at the poles and at the equator though because it spins so slowly.

Earth is the largest of the four inner planets with a radius of 6,378 kilometers at the equator. This is over two times larger than the radius of Mercury. The radius between the poles is 21.3 km less than the radius at the equator because the planet has flattened slightly since it only takes 24 hours to rotate.

Mars is a surprisingly small planet with a radius of 3,396 kilometers at the equator and 3,376 kilometers at the poles. This means that Mars’ radius is only about half of Earth’s radius.

Jupiter is the largest of all the planets. It has a radius of 71,492 kilometers at the equator and a radius of 66,854 kilometers at the poles. This is a difference of 4,638 kilometers, which is almost twice Mercury’s radius. Jupiter has a radius at the equator 11.2 times Earth’s equatorial radius.

Saturn has an equatorial radius of 60,268 kilometers and a radius of 54,364 kilometers at the poles making it the second largest planet in our Solar System. The difference between its two radiuses is a little more than twice the radius of Mercury.

Uranus has an equatorial radius of 25,559 kilometers and a radius of 24,973 kilometers at the poles. Although this is much smaller than Jupiter’s radius, it is around four times the size of Earth’s radius.

Neptune’s equatorial radius of 24,764 kilometers makes it the smallest of the four outer planets. The planet has a radius of 24,341 kilometers at the poles. Neptune’s radius is almost four times the size of Earth’s radius, but it is only about a third of Jupiter’s radius.

Universe Today has articles on the radius of Neptune and the size of the planets.

If you are looking for more information, check out NASA’s Solar System exploration page, and here’s a link to NASA’s Solar System Simulator.

Astronomy Cast has an episode on Venus and more on all the planets.

Volume of the Planets

Planets and other objects in our Solar System. Credit: NASA.

[/caption]

There are a number of measurements that astronomers use, including mass, surface area, diameter, and radius, to determine the the size of the planets. Volume is one measurement of the size of a planet. It is a measurement of how much three-dimensional space an object occupies. The volumes of the planets, along with other measurements, help astronomers discover the physical composition of the planets in addition to other information about them.

Mercury is the littlest planet in our Solar System with the smallest volume of any planet. It has a volume of 6.083 x 1010 cubic kilometers, which is only 5.4% of Earth’s volume.

Venus is only slightly smaller than Earth with a volume of 9.38 x 1011 km3. That is 86% of the Earth’s volume. This may not seem like Venus is that close in size to our planet,  but Venus is closer in size to Earth than any other planet is.

Earth is the largest of the four inner planets, although it is nothing compared to the gas giants. Earth has a volume of 1.08 x 1012 cubic kilometers.

Mars is actually a rather small planet with a volume of 1.6 x 1011 cubic kilometers. While that is larger than Mercury’s volume and pretty big in general, it is only 15% of Earth’s volume. You could put over six planets the size of Mars inside the Earth.

The largest planet in our Solar System, Jupiter’s size is astounding. Jupiter has a volume of 1.43 x 1015 cubic kilometers. To show what this number means, you could fit 1321 Earths inside of Jupiter. It is hard to imagine how large that actually is.

Saturn is the second largest planet in the Solar System. It has a volume of 8.27 x 1014 cubic km. Although it is only a fraction of the size of Jupiter, you could fit 764 Earths inside of the gas giant.

Uranus is a large planet with a volume of 6.833 x 1013 cubic kilometers. You could fit a little more than 63 Earths inside of Uranus, but like the other gas giants, it is not very dense. Comprised mostly of gas, the planet is only about 14.5 times more massive than Earth is.

Neptune is the smallest gas giant in our Solar System, but it is still much larger than any of the inner planets. Neptune has a volume of 6.3 x 1013 cubic kilometers, which is equal to about 57 Earths. Even though Neptune’s volume is much greater than the Earth’s is, the gravity on Neptune is only about 14% greater than it is on Earth. This is due to the gas giant’s small mass.

Universe Today has articles on size of the planets and mass of the planets.

Check out an overview of the Solar System and all about the planets.

Astronomy Cast has an episode on Jupiter and episodes on all the planets.

Mythology of the Planets

Planets and other objects in our Solar System. Credit: NASA.

[/caption]

Thousands of years ago, ancient civilizations turned to the heavens, marveling at their wonders. These ancient people worshipped various gods and often linked their gods with planets in the sky, which they considered to be “wandering stars.”

Mercury gets its name from the winged messenger of the gods. He was also the god of thievery, commerce, and travel. Most likely, the planet got its name from the rate at which it spins.

Venus was the Roman goddess of love and beauty, so it is a fitting name for this brightly shining planet. The only objects in our Solar System brighter than Venus are the Sun and the Moon. Ancient civilizations thought that Venus was two different objects – the Morning Star and the Evening Star. Other civilizations have also associated the planet with love. The Babylonians called the planet Ishtar after their goddess of womanhood and love.

Earth is the only planet not named after a Roman god or goddess, but it is associated with the goddess Terra Mater (Gaea to the Greeks). In mythology, she was the first goddess on Earth and the mother of Uranus. The name Earth comes from Old English and Germanic. It is derived from “eor(th)e” and “ertha,” which mean “ground.” Other civilizations all over the world also developed terms for our planet.

Mars is named after the Roman god of war. The planet got its name from the fact that it is the color of blood.  Other civilizations also named the planets for its red color.

Jupiter was the Roman king of the gods. Considering that Jupiter is the largest planet in our Solar System, it makes sense that the planet was named after the most important god.

Saturn was named after the Roman god of agriculture and harvest. While the planet may have gotten its name from its golden color, like a field of wheat, it also had to do with its position in the sky. According to mythology, the god Saturn stole the position of king of the gods from his father Uranus. The throne was then stolen by Jupiter.

Uranus was not discovered until the 1800’s, but the astronomers in that time period continued the tradition of naming planets after Roman gods. In mythology, Uranus was the father of Saturn and was at one time the king of the gods.

While Neptune almost ended up being named after one of the astronomers credited with discovering it – Verrier – that was greatly disputed, so it was named after the god of the sea. The name was probably inspired by its blue color.

Pluto is no longer a planet, but it used to be. The dark, cold, former planet was named after the god of the underworld. The first two letters of Pluto are also the initials of the man who predicted  its existence, Percival Lowell.

Universe Today has articles on names of the planets and all the planets.

For more information on the planets check out all about the planets and mythology of the planets.

Astronomy Cast has episodes on all the planets including Saturn.

Surface of the Planets

Planets and other objects in our Solar System. Credit: NASA.

[/caption]

People have been intrigued for centuries by whether life could exist on other planets. While we now know that it is very unlikely that life as we know it could exist on other planets in our Solar System, many people do not know the surface conditions of these various planets.

Mercury resembles nothing so much as a larger version of the Moon. This planet is so close to the Sun that it is actually difficult to observe. The Hubble Space Telescope cannot look at it because it would permanently damage the lens.

Venus’ atmosphere of thick, toxic clouds hides the planet’s surface from view. Scientists and amateurs alike used to think that the planet was covered with thick forests and flora like tropical rainforests on Earth.  When they were finally able to send probes to the planet, they discovered that Venus’ surface was actually more like a vision of hell with a burning landscape that is dotted with volcanoes.

Mars has very diverse terrain. One of the planet’s most famous features is its canals, which early astronomers believed were “man”-made and contained water. These huge canyons were most likely formed by the planet’s crust splitting. Mars is also famous for its red color, which is iron oxide (rust) dust that covers the surface of the entire planet. The surface of Mars is covered with craters, volcanoes, and plains. The largest volcanoes of any planet are on Mars.

Jupiter is a gas giant, so it has no solid surface just a core of liquid metals. Astronomers have created a definition for the surface – the point at which the atmosphere’s pressure is one bar. This region is the lower part of the atmosphere where there are clouds of ammonia ice.

Saturn is also a gas giant so it has no solid surface only varying densities of gas. Like Jupiter, almost all of Saturn is composed of hydrogen with some helium and other elements in trace amounts.

Uranus and Neptune are also gas giants, but they belong to the subcategory of ice giants because of the “ices” in their atmospheres. Uranus’ surface gets its blue color from the methane in the atmosphere. Methane absorbs light that is red or similar to red on the color spectrum leaving only the light near the blue end of the spectrum visible.

Neptune is also blue due to the methane in its atmosphere. Its “surface” has the fastest winds of any planet in the Solar System at up to 2,100 kilometers per hour.

Universe Today has a number of articles including surface of Mars and surface of Mercury.

Check out NASA’s Solar System exploration page, and here’s a link to NASA’s Solar System Simulator.

Astronomy Cast has an episode on each planet including Earth.

All the Planets

This is a picture of the sequence of the eight planets and three of the dwarf planets. Image courtesy of IAU.

[/caption]

Since 2006, due to a controversial decision by the International Astronomical Union (IAU) that demoted Pluto to a dwarf planet, we have had eight planets.

Mercury is a small planet, which can reach extreme temperatures. Since the planet is the closest one to the Sun, it can reach temperatures of 450°C. However, because the planet has almost no atmosphere due to very little gravity, the surface also drops to low temperatures of -170°C.

Venus is farther from the Sun than Mercury is, but it stays hotter due to its thick, toxic atmosphere. The main compound in Venus’ atmosphere is carbon dioxide, which creates the strongest greenhouse effect of any planet.

Undoubtedly, you already know a lot about Earth, but you may not know that our planet is the only one in our Solar System that has plate tectonics. The Earth’s outer crust is broken up into various sections called plates, which can move. These plates also take carbon out of the atmosphere and recycle it. This prevents a greenhouse effect like Venus’ and keeps the Earth from getting too hot. This is just one feature of our unique planet that helps support life.

Mars is the only inner planet, except for Earth, that has moons. Its two moons are called Phobos and Deimos. In Greek mythology, Phobos is a son of Ares (the equivalent of Mars) and Deimos is a figure that represents dread.

Jupiter is the model for gas giants as well as being the largest planet in our Solar System. It was named after the Roman king of the gods who was also the god of the sky and of thunder, which is fitting considering its size. Jupiter has 63 moons – more than any other planet in our Solar System.

Saturn is the only planet in our Solar System that has an average density less than water. Its core is actually denser than water, but its gas atmosphere balances the heavier core. You may consider floating Saturn in water, but even if you found a planet with a large enough body of water, the gases that make up Saturn’s atmosphere would simply merge with the other planet’s atmosphere.

 Uranus and Neptune both belong to a class of gas giants called ice giants because they contain higher amounts of “ices” in their atmosphere. These ices include water, ammonia, and methane.

Neptune is an ice giant with the fastest winds of any planets. These winds can reach speeds of 2,100 kilometers per hour. The planet was discovered with mathematical predictions when astronomers noticed discrepancies in Uranus’ orbit.

Universe Today has many articles on the planets including order of the planets and planets in the Solar System.

If you are looking for more information, try all about the planets and an overview of the planets.

Astronomy Cast has episodes on all the planets including Jupiter.

Geology of Venus

Artist's impression of the surface of Venus, showing its lightning storms and a volcano in the distance. Credit and ©: European Space Agency/J. Whatmore

Take a look at Venus in even the most powerful telescope, and all you’ll see is clouds. There are no surface features visible at all. It wasn’t until the last few decades, when radar equipped spacecraft arrived at Venus, that scientists finally had a chance to study the geology of Venus in great detail.

Spacecraft like NASA’s Magellan mission are equipped with radar instruments that let it penetrate down through the clouds on Venus and reveal the surface below. Magellan found that the surface of Venus does have many impact craters and evidence of past volcanism. But the total number of craters showed that the surface of Venus is actually pretty young. It’s likely that some catastrophic event resurfaced Venus about 300-500 million years ago, wiping out old craters and volcanoes.

Unlike Earth, Venus doesn’t have plate tectonics. It’s possible that the planet had them in the ancient past, but rising temperatures shut them down and helped the planet go into a runaway greenhouse cycle. Carbon on Earth is trapped by plants, and is then recycled into the Earth through plate tectonics. But on Venus, the tectonic system shut down, so carbon was able to build up to tremendous levels. This cycle thickened the atmosphere, raised temperatures with its greenhouse effect, releasing more carbon, raising temperatures even higher… etc.

There are volcanoes on Venus; scientists have identified more than 100 isolated shield volcanoes. And there are thousands and maybe even millions of smaller volcanoes less than 20 km across. Many of these have a strange dome-shaped structure, believed to have formed when plumes of magma thrust the crust upward and then collapsed.

Scientists can’t be exactly sure what the internal structure of Venus is like, but based on its density, Venus is probably similar to Earth in composition. It’s believed to have a solid or liquid core of metal 3,000 km across. This is surrounded by a mantle of rock 3,000 km thick, and then a thin crust of solid rock about 50 km thick.

One big difference between Earth and Venus is the lack of a planetary magnetic field at Venus. It’s believed that the Earth’s magnetic field is driven by the convection of liquid metal at the Earth’s core. If true, it means that Venus probably doesn’t have the same kind of temperature differences at its core, and lacks the convection to sustain a planetary magnetic field.

We have written many articles about Venus for Universe Today. Here’s an article about Venus’ wet, volcanic past, and here’s an article about how Venus might have had continents and oceans in the ancient past.

Want more information on Venus? Here’s a link to Hubblesite’s News Releases about Venus, and here’s NASA’s Solar System Exploration Guide to Venus.

We have recorded a whole episode of Astronomy Cast that’s only about planet Venus. Listen to it here, Episode 50: Venus.

Reference:
NASA Solar System Exploration: Geologic Landforms of Venus
NASA Science: Blazing Venus
NASA Solar System Exploration: Venus