Dark Matter Has a Firm Grip on These Galaxies

NGC 1270 is just one member of the Perseus Cluster, a group of thousands of galaxies that lies around 240 million light-years from Earth in the constellation Perseus. This image, taken with the Gemini Multi-Object Spectrograph (GMOS) on the Gemini North telescope, one half of the International Gemini Observatory, captures a dazzling collection of galaxies in the central region of this enormous cluster. Image Credit: International Gemini Observatory/NOIRLab/NSF/AURA/ Image Processing: J. Miller & M. Rodriguez (International Gemini Observatory/NSF NOIRLab), T.A. Rector (University of Alaska Anchorage/NSF NOIRLab), M. Zamani (NSF NOIRLab) Acknowledgements: PI: Jisu Kang (Seoul National University)

The elliptical galaxy NGC 1270 lies about 240 million light-years away. But it’s not alone. It’s part of the Perseus Cluster (Abell 426), the brightest X-ray object in the sky and one of the most massive objects in the Universe.

NGC 1270 plays a starring role in a new image from the Gemini North telescope. However, the image doesn’t show the dark matter that has a firm grip on the galaxy and the rest of the galaxies in the Perseus Cluster.

Continue reading “Dark Matter Has a Firm Grip on These Galaxies”

Vera Rubin’s Monster 3200-Megapixel Camera Takes its First Picture (in the Lab)

The complete focal plane of the future LSST Camera is more than 2 feet wide and contains 189 individual sensors that will produce 3,200-megapixel images. Crews at SLAC have now taken the first images with it. (Jacqueline Orrell/SLAC National Accelerator Laboratory)
The complete focal plane of the future LSST Camera is more than 2 feet wide and contains 189 individual sensors that will produce 3,200-megapixel images. Crews at SLAC have now taken the first images with it. (Jacqueline Orrell/SLAC National Accelerator Laboratory)

The Vera C. Rubin Observatory has taken another step towards first light, projected for some time in 2022. Its enormous 3200 megapixel camera just took its first picture during lab testing at the SLAC National Accelerator Laboratory. The camera is the largest ever built, and its unprecedented power is the driving force behind the Observatory’s ten year Legacy Survey of Space and Time (LSST).

Continue reading “Vera Rubin’s Monster 3200-Megapixel Camera Takes its First Picture (in the Lab)”

Hubble Captured a Photo of This Huge Spiral Galaxy, 2.5 Times Bigger than the Milky Way With 10 Times the Stars

This Hubble Space Telescope photograph showcases the majestic spiral galaxy UGC 2885, located 232 million light-years away in the northern constellation Perseus. The galaxy is 2.5 times wider than our Milky Way and contains 10 times as many stars. A number of foreground stars in our Milky Way can be seen in the image, identified by their diffraction spikes. The brightest star photobombs the galaxy's disk. The galaxy has been nicknamed "Rubin's galaxy," after astronomer Vera Rubin (1928 – 2016), who studied the galaxy's rotation rate in search of dark matter. Credits: NASA, ESA and B. Holwerda (University of Louisville)

This galaxy looks a lot like our own Milky Way galaxy. But while our galaxy is actively forming lots of new stars, this one is birthing stars at only half the rate of the Milky Way. It’s been mostly quiet for billions of years, feeding lightly on the thin gas in intergalactic space.

Continue reading “Hubble Captured a Photo of This Huge Spiral Galaxy, 2.5 Times Bigger than the Milky Way With 10 Times the Stars”

Great News! The Large Synoptic Survey Telescope Might be Named for Vera Rubin

The LSST, or Vera Rubin Survey Telescope, under construction at Cerro Pachon, Chile. Image Credit: LSST

The U.S. House of Representatives have passed a bill to change the name of the Large Synoptic Survey Telescope (LSST.) Instead of that explanatory yet cumbersome name, it will be named after American astronomer Vera Rubin. Rubin is well-known for her pioneering work in discovering dark matter.

Continue reading “Great News! The Large Synoptic Survey Telescope Might be Named for Vera Rubin”

Are There Dark Matter Galaxies? ft. Sarah Pearson from Space with Sarah

Dark Matter Galaxies?
Dark Matter Galaxies?


One of the things I love about astronomy is how it’s rapidly changing and evolving over time. Every day there are new discoveries, and advancements in theories that take us incrementally forward in our understanding of the Universe.

One of the best examples of this is dark matter; mysterious and invisible but a significant part of the Universe and accounting for the vast majority of mass out there.

It was first theorized almost 100 years ago when astronomers surveyed the total mass of distant galaxy clusters and found that the visible mass we can see must be just a fraction of the total material in the clusters. When you add up the stars and gas, galaxies move and rotate in ways that indicate there’s a huge halo of invisible matter surrounding it.

Some of the best evidence came from Vera Rubin and Kent Ford in the 60s and 70s, when they measured the rotational velocity of edge-on spiral galaxies. They estimated that there must be about 6 times as much dark matter as regular matter.

This NASA Hubble Space Telescope image shows the distribution of dark matter in the center of the giant galaxy cluster Abell 1689

Dark matter became a serious mystery in astronomy, and many observers and theorists have spent the last half century trying to work out what it is.

And dark matter hasn’t given up its secrets easily. Originally, astronomers thought it might not actually be invisible mass, but a misunderstanding of how gravity works at the largest scales.

But over the last few decades, techniques have been developed, using the gravity of dark matter itself to measure how it bends light from more distant objects. Astronomers don’t know what dark matter is, but they’re able to use it as a telescope. Now that’s impressive.

They’ve found amazing features in the dark matter web out there, vast walls and filaments defining the largest scale structures in the Universe. Clusters where dark matter and its gas have been separated from each other.

Remember, we are at the cutting edge of this mystery, and you’re watching it unfold in real time. 25 years from now, I’m sure we’ll look back at our quaint attempts to understand dark matter.

One of the most interesting questions I have right now is: could there be dark matter galaxies? Completely invisible to our eyes, but able to interact through gravity?

Dark Matter Distribution in Supercluster Abell 901/902

Of course, in times like this, I like to bring in a ringer. Someone who has dedicated their life to the study of these questions.

And today, I’ve got with my Sarah Pearson, a graduate student in astronomy at Columbia University and the host of “Space with Sarah”. Sarah studies the formation and interactions of dwarf galaxies surrounding the Milky Way to understand how galaxies built up at the earliest times in the Universe and form the large galaxies we see at present day.


Fraser: Sarah, welcome to the Guide to Space.

Sarah: Hi Fraser, thanks.

Fraser: Can you talk a little bit about how astronomers map out the distribution of dark matter in the Universe?

Sarah: Yes, definitely. So that is a hard question, as you just explained, we don’t see the dark matter. But one assumption about the Universe we live in is that the light matter or baryonic matter. For example, what you, me and stars consist of, and also galaxies, kind of trace out where the dark matter is located.

So one assumption is that the light matter follows the dark matter. In that way we can actually map out to huge distances, kind of how galaxies and clusters of galaxies are located in our Universe. And we imagine that the dark matter structure is somewhat similar.

Simulation of dark matter. Image credit: NASA

And also recently, very large scale structure simulations of our own Universe have addressed this by kind of starting out with an almost uniform distribution of dark matter in the very early Universe. And what they see is when they let the Universe evolve in time, for example, when the Universe is expanding, you kind of have these dark matter clumps forming into galaxies in all these filaments that you discussed.

You can kind of trace out the location of dark matter by understanding the expansion of space versus gravity that creates the galaxies that we see.

Fraser: And I know in the observations that you see these different distributions of matter and dark matter, it’s not the perfect 1:6 radio that I just mentioned before. You actually see clumping of dark matter that’s sometimes separated from regular matter. So can you actually have whole galaxies that are entirely made of dark matter?

Sarah: Yes, that’s one of the topics I’m super excited about. I work on some of these dark matter only galaxies, and the way you can think about it is that the dark matter is almost uniformly distributed in the early Universe. But some of it is slightly denser than other parts, which collapses down into galaxies. And a lot of those galaxies will actually be a lot smaller than the Milky Way. And because they’re so small, they have a hard time actually holding onto the matter within them.

A bright young star shines Credit: NASA/JPL-Caltech

We think that when star formation turned on in these galaxies, you might actually blow out a lot of the gas that might create more stars, but you won’t blow out the dark matter. That means you could end up with these small tiny galaxies that only have dark matter. They might have some gas, but they’re very hard for us astronomers to find.

Fraser: Well, if they are dark matter, and the dark matter is invisible, how do we find them?

Sarah: Oh, great question. So for example, around our own galaxy Milky Way, it’s hypothesized in our current paradigm of cosmology and the way we think about the Universe, there should actually be thousands of dark matter clumps, these dark matter galaxies, kind of orbiting our own galaxy.

Artist’s impression of dark matter surrounding the Milky Way. (ESO/L. Calçada)

Some of these might be destroyed when they pass through the huge Milky Way disk, that’s one way of destroying them. The smaller ones might be destroyed just by the tides as they orbit around the galaxy. However, we imagine that some of them might survive. Actually they can plough through what we call stellar streams, which are formed when a real galaxy falls into our own Milky Way and tidally stretched out. You should be able to see these density signatures in the stellar stream, and that might indicate what type of dark matter halo that ploughed through them.

Fraser: You hinted at a way that they could form. You’ve got these stars as they’re early forming and blasting themselves apart and the clump of dark matter can’t hold onto them, so that part is gone. Is that the main way these might form, are there other ways you can get these dark galaxies?

Sarah: A different hypothesis is if you have an AGN, an active galactic nuclei within a galaxy from a black hole, you could actually that way blow out a lot of the gas from a galaxy as well. But it’s still not really clear to us astronomers what type of galaxies and if small galaxies would have these active galactic nuclei.

This artist’s impression shows the surroundings of the supermassive black hole at the heart of the active galaxy NGC 3783 in the southern constellation of Centaurus (The Centaur). Credit: ESO/M. Kornmesser

So the best theory right now is that some of them might have attracted a lot of gas initially because they didn’t have a lot of gravity to pull in the gas. But also, because this gas is completely lost. Also from stars exploding, actually, not just from stars turning on initially.

Fraser: And I know that astronomers and physicists are trying to search for dark matter in the Large Hadron Collider, and try to see if they can understand the underlying particle. Does the search that you’re working on give us any sense of that underlying nature of dark matter?

Sarah: Yeah, also a great question, because for example if dark matter is cold. The cold dark matter paradigm is very popular right now. Which states that dark matter might be a very massive weakly interacting particle. When we’re saying warm or cold dark matter, we’re also referring to how fast it’s moving. And depending on what kind of particle dark matter is, that kind of sets the structure for of the early Universe.

So we can start to count, if we have cold dark matter, we would expect to see a certain amount of these cold dark galaxies, where that amount would be different, if we had warm dark matter.

The international Super Cryogenic Dark Matter Search (SuperCDMS) has detected what may be the particle that’s thought to make up dark matter throughout the Universe.

Fraser: That’s really cool, so the observations that you do give the physicists a better idea of what they should be looking for in their particle accelerators, and the two sides can work together. That’s really great.

Okay Sarah, place your bets. What do you think is the most likely candidate for dark matter?

Sarah: I still think this is a hard question, and I’m not sure if the particle physicists yet think we’re helping them. We’re still approaching things from different sides, but we’ll see.

I still think it’s going to be one of those weakly interactive massive particles that we just haven’t detected yet.

Fraser: Thank you so much for joining me on the Guide to Space Sarah, I really appreciate you explaining these dark matter galaxies to us.


Well there you have it. Dark matter is strange, strange stuff. We still don’t know what it is, but we can see how it moves, interacts with matter through its gravity. And we can see how it can form entire galaxies of just dark matter.

A big thanks to Sarah Pearson. If you haven’t already, go and check out her YouTube channel: Space with Sarah. She’s covering big topics, like wondering when the Sun will shut off, how big the Universe is, and how galaxies can collide in an expanding Universe.

Weekly Space Hangout – December 30, 2016: Nancy Atkinson’s “Incredible Stories from Space”

Host: Fraser Cain (@fcain)

Special Guest:
This week’s guest is Nancy Atkinson, an editor and writer for Universe Today, and is the author of a book about NASA’s robotic space missions, “Incredible Stories From Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos.” She was the editor in chief for Space Lifestyle Magazine and also has had articles published on Wired.com, Space.com, NASA’s Astrobiology Magazine, Space Times magazine, and several newspapers in the Midwest. She has been involved with several space-related podcasts, including Astronomy Cast, 365 Days of Astronomy and was the host of the NASA Lunar Science Institute podcast. Nancy is also a NASA/JPL Solar System Ambassador; she lives in Minnesota.

Guests:
Carolyn Collins Petersen (thespacewriter.com / space.about.com / @spacewriter )
Paul M. Sutter (pmsutter.com / @PaulMattSutter)

Their stories this week:
RIP Dr. Vera Rubin
Losing our Heroes
Shining light on anti-hydrogen
The ocean of Ceres?

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page<

A New Look at Dark Matter — Is the Milky Way Less of a Behemoth Than Previously Thought?

This annotated artist's conception illustrates our current understanding of the structure of the Milky Way galaxy. Image Credit: NASA
This annotated artist's conception illustrates our current understanding of the structure of the Milky Way galaxy. Image Credit: NASA

Astronomy is notorious for raising more questions than it answers. Take the observation that the vast majority of matter is invisible.

Although astronomers have gathered overwhelming evidence that dark matter makes up roughly 84 percent of the universe’s matter — providing straightforward explanations for the rotation of individual galaxies, the motions of distant galaxy clusters, and the bending of distant starlight — they remain unsure about any specifics.

Now, a group of Australian astronomers thinks there’s only half as much dark matter in the Milky Way as previously thought.

In 1933, Swiss astronomer Fritz Zwicky observed the Coma cluster — a galaxy cluster roughly 320 million light-years away and nearly 2 light-years across — and found that it moved too rapidly. There simply wasn’t enough visible matter to hold the galaxy cluster together.

Zwicky decided there must be a hidden ingredient, known as dunkle Materie, or dark matter, that caused the motions of these galaxies to be so large.

The rotation curve of the Milky Way. Image Credit: Kafle et al.
The rotation curve of the Milky Way. Image Credit: Kafle et al.

Then in 1978, American astronomer Vera Rubin looked at individual galaxies. Astronomers largely assumed galaxies rotated much like our Solar System, with the outer planets rotating slower than the inner planets. This argument aligns with Newton’s Laws and the assumption that most of the mass is located in the center.

But Rubin found that galaxies rotated nothing like our own Solar System. The outer stars did not rotate slower than the inner stars, but just as fast. There had to be dark matter on the outskirts of every galaxy.

Now, astronomer Prajwal Kafle, from The University of Western Australia, and his colleagues have once again observed the speed of stars on the outskirts of our own galaxy, the Milky Way. But he did so in much greater detail than previous estimates.

From a star’s speed, it’s relatively simple to calculate any interior mass. The simple equation below shows that the interior mass (M) is equal to the distance the star is from the galactic center (R) times its velocity (V) squared, all divided by the gravitational constant (G):
Screen Shot 2014-10-13 at 2.35.47 PM

Kafle and his colleagues used messier physics accounting for the sloppiness of the galaxy. But the point holds, with a star’s velocity, you can calculate any interior mass. And with multiple stars’ velocities you’re bound to be more accurate. The team found the dark matter in our galaxy weighs 800 billion times the mass of the Sun, half of previous estimates.

“The current idea of galaxy formation and evolution … predicts that there should be a handful of big satellite galaxies around the Milky Way that are visible with the naked eye, but we don’t see that,” said Kafle in a news release. This is typically referred to as the missing satellites problem, and it has evaded astronomers for years.

“When you use our measurement of the mass of the dark matter the theory predicts that there should only be three satellite galaxies out there, which is exactly what we see; the Large Magellanic Cloud, the Small Magellanic Cloud and the Sagittarius Dwarf Galaxy,” said Kafle.

These new measurements might prove the Milky Way is not quite the behemoth astronomers previously thought. They also help explain why there are so few satellite galaxies in orbit. But first the results will have to be confirmed as they stand up against numerous other ways to weigh the dark matter in our galaxy.

The results have been published in the Astrophysical Journal and are available online.