Gamma ray Telescopes Might be Able to Detect the Gravitational Waves Caused by Merging Supermassive Black Holes

Gamma rays could be the new source for observing gravitational waves, according to a recent release from the Max Planck Institute for Radio Astronomy. This would make a possible third way to observe gravitational waves including laser interferometry and radio waves.

In 1916 Einstein predicted the existence of gravitational waves, ripples in space-time moving out in all directions away from massive accelerating objects. According to his theory, these waves would travel at the speed of light and would carry with them information about where they came from and would allow us to learn more about gravity.

Continue reading “Gamma ray Telescopes Might be Able to Detect the Gravitational Waves Caused by Merging Supermassive Black Holes”

New Gravitational Waves Detected From Four More Black Hole Mergers. Total Detections up to 11 Now

Graphic showing the masses for black holes detected through electromagnetic observations (purple); the black holes measured by gravitational-wave observations from LIGO and Virgo (blue); neutron stars measured with electromagnetic observations (yellow); and the masses of the neutron stars that merged in an event called GW170817, which were detected in gravitational waves (orange). Credit and ©: LIGO-Virgo/Frank Elavsky/Northwestern

On February 11th, 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) made history when they announced the first-ever detection of gravitational waves (GWs). Since that time, multiple detections have taken place and scientific collaborations between observatories  – like Advanced LIGO and Advanced Virgo – are allowing for unprecedented levels of sensitivity and data sharing.

Previously, seven such events had been confirmed, six of which were caused by the mergers of binary black holes (BBH) and one by the merger of a binary neutron star. But on Saturday, Dec. 1st, a team of scientists the LIGO Scientific Collaboration (LSC) and Virgo Collaboration presented new results that indicated the discovery of four more gravitational wave events. This brings the total number of GW events detected in the last three years to eleven.

Continue reading “New Gravitational Waves Detected From Four More Black Hole Mergers. Total Detections up to 11 Now”

Astronomers Set the Limit for Just How Massive Neutron Stars Can Be

Artist's illustration of two merging neutron stars. The narrow beams represent the gamma-ray burst while the rippling spacetime grid indicates the isotropic gravitational waves that characterize the merger. Swirling clouds of material ejected from the merging stars are a possible source of the light that was seen at lower energies. Credit: National Science Foundation/LIGO/Sonoma State University/A. Simonnet

In February of 2016, scientists working at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made history when they announced the first-ever detection of gravitational waves. Since that time, the study of gravitational waves has advanced considerably and opened new possibilities into the study of the Universe and the laws which govern it.

For example, a team from the University of Frankurt am Main recently showed how gravitational waves could be used to determine how massive neutron stars can get before collapsing into black holes. This has remained a mystery since neutron stars were first discovered in the 1960s. And with an upper mass limit now established, scientists will be able to develop a better understanding of how matter behaves under extreme conditions.

The study which describes their findings recently appeared in the scientific journal The Astrophysical Journal Letters under the title “Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars“. The study was led by Luciano Rezzolla, the Chair of Theoretical Astrophysics and the Director of the Institute for Theoretical Physics at the University of Frankfurt, with assistance provided by his students, Elias Most and Lukas Wei.

Collisions of neutron stars produce powerful gamma-ray bursts – and heavy elements like gold. Credit: Dana Berry, SkyWorks Digital, Inc.

For the sake of their study, the team considered recent observations made of the gravitational wave event known as  GW170817. This event, which took place on August 17th, 2017, was the sixth gravitational wave to be discovered by the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo Observatory. Unlike previous events, this one was unique in that it appeared to be caused by the collision and explosion of two neutron stars.

And whereas other events occurred at distances of about a billion light years, GW170817 took place only 130 million light years from Earth, which allowed for rapid detection and research. In addition, based on modeling that was conducted months after the event (and using data obtained by the Chandra X-ray Observatory) the collision appeared to have left behind a black hole as a remnant.

The team also adopted a “universal relations” approach for their study, which was developed by researchers at Frankfurt University a few years ago. This approach implies that all neutron stars have similar properties which can be expressed in terms of dimensionless quantities. Combined with the GW data, they concluded that the maximum mass of non-rotating neutron stars cannot exceed 2.16 solar masses.

 

Artist’s impression of gravitational-wave emissions from a collapsing star. Credit: aktuelles.uni-frankfurt.de

As Professor Rezzolla explained in a University of Frankfurt press release:

“The beauty of theoretical research is that it can make predictions. Theory, however, desperately needs experiments to narrow down some of its uncertainties. It’s therefore quite remarkable that the observation of a single binary neutron star merger that occurred millions of light years away combined with the universal relations discovered through our theoretical work have allowed us to solve a riddle that has seen so much speculation in the past.”

This study is a good example of how theoretical and experimental research can coincide to produce better models ad predictions. A few days after the publication of their study, research groups from the USA and Japan independently confirmed the findings. Just as significantly, these research teams confirmed the studies findings using different approaches and techniques.

In the future, gravitational-wave astronomy is expected to observe many more events. And with improved methods and more accurate models at their disposal, astronomers are likely to learn even more about the most mysterious and powerful forces at work in our Universe.

Further Reading: Goethe University Frankfurt am Main, The Astrophysical Journal Letters

Scientist Find Treasure Trove of Giant Black Hole Pairs

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.
Artist's impression of merging binary black holes. Credit: LIGO/A. Simonnet.

For decades, astronomers have known that Supermassive Black Holes (SMBHs) reside at the center of most massive galaxies. These black holes, which range from being hundreds of thousands to billions of Solar masses, exert a powerful influence on surrounding matter and are believed to be the cause of Active Galactic Nuclei (AGN). For as long as astronomers have known about them, they have sought to understand how SMBHs form and evolve.

In two recently published studies, two international teams of researchers report on the discovery of five newly-discovered black hole pairs at the centers of distant galaxies. This discovery could help astronomers shed new light on how SMBHs form and grow over time, not to mention how black hole mergers produce the strongest gravitational waves in the Universe.

The first four dual black hole candidates were reported in a study titled “Buried AGNs in Advanced Mergers: Mid-Infrared Color Selection as a Dual AGN Finder“, which was led by Shobita Satyapal, a professor of astrophysics at George Mason University. This study was accepted for publication in The Astrophysical Journal and recently appeared online.

Optical and x-ray data on two of the new black hole pairs discovered. Credit: NASA/CXC/Univ. of Victoria/S.Ellison et al./George Mason Univ./S.Satyapal et al./SDSS

The second study, which reported the fifth dual black hole candidate, was led by Sarah Ellison – an astrophysics professor at the University of Victoria. It was recently published in the Monthly Notices of the Royal Astronomical Society under the title “Discovery of a Dual Active Galactic Nucleus with ~8 kpc Separation. The discovery of these five black hole pairs was very fortuitous, given that pairs are a very rare find.

As Shobita Satyapal explained in a Chandra press statement:

“Astronomers find single supermassive black holes all over the universe. But even though we’ve predicted they grow rapidly when they are interacting, growing dual supermassive black holes have been difficult to find.

The black hole pairs were discovered by combining data from a number of different ground-based and space-based instruments. This included optical data from the Sloan Digital Sky Survey (SDSS) and the ground-based Large Binocular Telescope (LBT) in Arizona with near-infrared data from the Wide-Field Infrared Survey Explorer (WISE) and x-ray data from NASA’s Chandra X-ray Observatory.

For the sake of their studies, Satyapal, Ellison, and their respective teams sought to detect dual AGNs, which are believed to be a consequence of galactic mergers. They began by consulting optical data from the SDSS to identify galaxies that appeared to be in the process of merging. Data from the all-sky WISE survey was then used to identify those galaxies that displayed the most powerful AGNs.

Illustration of a pair of black holes. Credit: NASA/CXC/A.Hobart

They then consulted data from the Chandra’s Advanced CCD Imaging Spectrometer (ACIS) and the LBT to identify seven galaxies that appeared to be in an advanced stage of merger. The study led by Ellison also relied on optical data provided by the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey to pinpoint one of the new black hole pairs.

From the combined data, they found that five out of the seven merging galaxies hosted possible dual AGNs, which were separated by less than 10 kiloparsecs (over 30,000 light years). This was evidenced by the infrared data provided by WISE, which was consistent with what is predicated of rapidly growing supermassive black holes.

In addition, the Chandra data showed closely-separated pairs of x-ray sources, which is also consistent with black holes that have matter slowly being accreted onto them. This infrared and x-ray data also suggested that the supermassive black holes are buried in large amounts of dust and gas. As Ellison indicated, these findings were the result of painstaking work that consisted of sorting through multiple wavelengths of data:

“Our work shows that combining the infrared selection with X-ray follow-up is a very effective way to find these black hole pairs. X-rays and infrared radiation are able to penetrate the obscuring clouds of gas and dust surrounding these black hole pairs, and Chandra’s sharp vision is needed to separate them”.

Artist’s impression of binary black hole system in the process of merging. Credit: Bohn et al.

Before this study, less than ten pairs of growing black holes had been confirmed based on X-ray studies, and these were mostly by chance. This latest work, which detected five black hole pairs using combined data, was therefore both fortunate and significant. Aside from bolstering the hypothesis that supermassive black holes form from the merger of smaller black holes, these studies also have serious implications for gravitational wave research.

“It is important to understand how common supermassive black hole pairs are, to help in predicting the signals for gravitational wave observatories,” said Satyapa. “With experiments already in place and future ones coming online, this is an exciting time to be researching merging black holes. We are in the early stages of a new era in exploring the universe.”

Since 2016, a total of four instances of gravitational waves have been detected by instruments like the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the VIRGO Observatory. However, these detections were the result of black hole mergers where the black holes were all smaller and less massive  – between eight and 36 Solar masses.

Supermassive Black Holes, on the other hand, are much more massive and will likely produce a much larger gravitational wave signature as they continue to draw closer together. And in a few hundred million years, when these pairs eventually do merge, the resulting energy produced by mass being converted into gravitational waves will be incredible.

Artist’s conception of two merging black holes, similar to those detected by LIGO on January 4th, 2017. Credit: LIGO/Caltech

At present, detectors like LIGO and Virgo are not able to detect the gravitational waves created by Supermassive Black Hole pairs. This work is being done by arrays like the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), which relies on high-precision millisecond pulsars to measure the influence of gravitational waves on space-time.

The proposed Laser Interferometer Space Antenna (LISA), which will be the first dedicated space-based gravitational wave detector, is also expected to help in the search. In the meantime, gravitational wave research has already benefited immensely from collaborative efforts like the one that exists between Advanced LIGO and Advanced Virgo.

In the future, scientists also anticipate that they will be able to study the interiors of supernovae through gravitational wave research. This is likely to reveal a great deal about the mechanisms behind black hole formation. Between all of these ongoing efforts and future developments, we can expect to “hear” a great deal more of the Universe and the most powerful forces at work within it.

Be sure to check out this animation that shows what the eventual merger of two of these black hole pairs will look like, courtesy of the Chandra X-ray Observatory:

Further Reading: Chandra HarvardarXiv, MNRAS

Do Gravitational Waves Permanently Alter the Nature of Spacetime?

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.
Artist's impression of merging binary black holes. Credit: LIGO/A. Simonnet.

On February 11th, 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) announced the first detection of gravitational waves. This development, which confirmed a prediction made by Einstein’s Theory of General Relativity a century prior, opened new avenues of research for cosmologists and astrophysicists. It was also a watershed for researchers at Monash University, who played an important role in the discovery.

And now, a little over a year later, a team of researchers from the Monash Center for Astrophysics has announced another potential revelation. Based on their ongoing studies of gravitational waves, the team recently proposed a theoretical concept known as ‘orphan memory’. If true, this concept could revolutionize the way we think about gravitational waves and spacetime.

Researchers from Monash Center for Astrophysics are part of what is known as the LIGO Scientific Collaboration (LSC) – a group of scientists dedicated to developing the hardware and software needed to study gravitational waves. In addition to creating a system for vetting detections, the team played a key role in data analysis – observing and interpreting the data that was gathered – and were also instrumental in the design of the LIGO mirrors.

Looking beyond what LIGO and other experiments (like the Virgo Interferometer) observed, the research team sought to address how these detectors capabilities could be extended further by finding the “memory” of gravitational waves. The study that describes this theory was recently published in the Physical Review Letters under the title “Detecting Gravitational Wave Memory without Parent Signals“.

According to their new theory, spacetime does not return to its normal state after a cataclysmic event generates gravitational waves that cause it to stretch out. Instead, it remains stretched, which they refer to as “orphan memory” – the word “orphan” alluding to the fact the “parent wave” is not directly detectable. While this effect has yet to be observed, it could open up some very interesting opportunities for gravitational wave research.

At present, detectors like LIGO and Virgo are only able to discern the presence of gravitational waves at certain frequencies. As such, researchers are only able to study waves generated by specific types of events and trace them back to their source. As Lucy McNeill, a researchers from the Monash Center for Astrophysics and the lead author on the paper, said in a recent University press statement:

“If there are exotic sources of gravitational waves out there, for example, from micro black holes, LIGO would not hear them because they are too high-frequency. But this study shows LIGO can be used to probe the universe for gravitational waves that were once thought to be invisible to it.”

LIGO’s two facilities, located in Livingston, Louisiana, and Hanford, Washington. Credit: ligo.caltech.edu

As they indicate in their study, high-frequency gravitational-wave bursts (i.e. ones that are in or below the kilohertz  range) would produce orphan memory that the LIGO and Virgo detectors would be able to pick up. This would not only increase the bandwidth of these detectors exponentially, but open up the possibility of finding evidence of gravity wave bursts in previous searches that went unnoticed.

Dr Eric Thrane, a lecturer at the Monash School of Physics and Astronomy and another a member of the LSC team, was also one of the co-authors of the new study. As he stated, “These waves could open the way for studying physics currently inaccessible to our technology.”

But as they admit in their study, such sources might not even exist and more research is needed to confirm that “orphan memory” is in fact real. Nevertheless, they maintain that searching for high-frequency sources is a useful way to probe for new physics, and it just might reveal things we weren’t expecting to find.

“A dedicated gravitational-wave memory search is desirable. It will have enhanced sensitivity compared to current burst searches,” they state. “Further, a dedicated search can be used to determine whether a detection candidate is consistent with a memory burst by checking to see if the residuals (following signal subtraction) are consistent with Gaussian noise.”

Alas, such searches may have to wait upon the proposed successors to the Advanced LIGO experiment. These include the Einstein Telescope and Cosmic Explorer, two proposed third-generation gravitational wave detectors. Depending on what future surveys find, we may discover that spacetime not only stretches from the creation of gravitational waves, but also bears the “stretch marks” to prove it!

Further Reading: Physical Review Letters

 

Monster Black Holes Lurk at the Edge of Time

The reddish object in this infrared image is ULASJ1234+0907, located about 11 billion light-years from Earth. The red color comes from vast amounts of dust, which absorbs bluer light, and obscures the supermassive black hole from view in visible wavelengths. Credit: image created using data from UKIDSS and the Wide-field Infrared Survey Explorer (WISE) observatory.

As if staring toward the edge of the Universe weren’t fascinating enough, scientists at the University of Cambridge say they see enormous, rapidly growing supermassive black holes barely detectable near the edge of time.

Thick dust shrouds the monster black holes but they emit vast amounts of radiation through violent interactions and collisions with their host galaxies making them visible in the infrared part of the electromagnetic spectrum. The team published their results in the journal Monthly Notices of the Royal Astronomical Society.

The most remote object in the study lies at a whopping 11 billion light-years from Earth. Ancient light from the supermassive black hole, named ULASJ1234+0907 and located toward the constellation of Virgo, the Maiden, has traveled (at almost 10 trillion kilometers, or 6 million million miles, per year) across the cosmos for nearly the estimated age of the Universe. The monster black hole is more than 10 billion times the mass of our Sun and 10,000 times more massive than the black hole embedded in the Milky Way Galaxy; making it one of the most massive black holes ever seen. And it’s not alone. Researchers say that there may be as many as 400 giants black holes in the tiny sliver of the Universe that we can observe.

“These results could have a significant impact on studies of supermassive black holes” said Dr Manda Banerji, lead author of the paper, in a press release. “Most black holes of this kind are seen through the matter they drag in. As the neighbouring material spirals in towards the black holes, it heats up. Astronomers are able to see this radiation and observe these systems.”

The team from Cambridge used infrared surveys being carried out on the UK Infrared Telescope (UKIRT) to peer through the dust and locate the giant black holes for the first time.

“These results are particularly exciting because they show that our new infrared surveys are finding super massive black holes that are invisible in optical surveys,” says Richard McMahon, co-author of the study. “These new quasars are important because we may be catching them as they are being fed through collisions with other galaxies. Observations with the new Atacama Large Millimeter Array (ALMA) telescope in Chile will allow us to directly test this picture by detecting the microwave frequency radiation emitted by the vast amounts of gas in the colliding galaxies.”

Huge black holes are known to reside at the centers of all galaxies. Astronomers predict the most massive of these cosmic phenomena grow through violent collisions with other galaxies. Galactic interactions trigger star formation which provides more fuel for black holes to devour. And it’s during this process that thick layers of dust hide the munching black holes.

“Although these black holes have been studied for some time,” says Banergi, “the new results indicate that some of the most massive ones may have so far been hidden from our view. The newly discovered black holes, devouring the equivalent of several hundred Suns every year, will shed light on the physical processes governing the growth of all supermassive black holes.”

Astronomers compare the extreme case of ULASJ1234+0907 with the relatively nearby and well-studied Markarian 231. Markarian 231, found just 600 million light-years away, appears to have recently undergone a violent collision with another galaxy producing an example of a dusty, growing black hole in the local Universe. By contrast, the more extreme example of ULASJ1234+0907, shows scientists that conditions in the early Universe were more turbulent and inhospitable than today.

Source: Royal Astronomical Society

Image Credit: Markarian 231, an example of a galaxy with a dusty rapidly growing supermassive black hole located 600 million light years from Earth. The bright source at the center of the galaxy marks the black hole while rings of gas and dust can be seen around it as well as “tidal tails” left over from a recent impact with another galaxy. Courtesy of NASA/ESA Hubble Space Telescope.