A 2nd Planet has been Confirmed for Proxima Centauri

An artist's illustration of the Proxima Centauri system. Proxima b is on the left, while Proxima C is on the right. Image Credit: Lorenzo Santinelli

Our closest stellar neighbour is Proxima Centauri, a small red dwarf star about 4.2 light years away from us. It’s the third member of the Alpha Centauri group, and even though it’s so close, it can’t be seen with the naked eye. In 2016 astronomers discovered a planet orbiting Proxima Centuari, named Proxima Centauri b. That planet was confirmed only a few days ago.

Now, astronomers have confirmed the existence of a second planet, Proxima Centauri c.

Continue reading “A 2nd Planet has been Confirmed for Proxima Centauri”

Astronomers Can Actually See the Clouds and Weather on Brown Dwarf 6.5 Light-Years Away

This artist's conception illustrates the brown dwarf named 2MASSJ22282889-431026, observed by NASA's Hubble and Spitzer space telescopes. Brown dwarfs are more massive and hotter than planets but lack the mass required to become stars. Image credit: NASA
This artist's conception illustrates the brown dwarf named 2MASSJ22282889-431026, observed by NASA's Hubble and Spitzer space telescopes. Brown dwarfs are more massive and hotter than planets but lack the mass required to become stars. Image credit: NASA

Brown dwarfs are in a tough spot. Not quite a star, not quite a planet, they occupy a place between gas giants and stars. They have more mass than gas giants like Jupiter, but not enough to ignite fusion and become a star.

But astronomers still study them. How could they resist?

Continue reading “Astronomers Can Actually See the Clouds and Weather on Brown Dwarf 6.5 Light-Years Away”

A Star is Orbiting the Milky Way’s Black Hole and Moving Exactly How Einstein Predicted it Should

Observations made with ESO’s Very Large Telescope (VLT) have revealed for the first time that a star orbiting the supermassive black hole at the centre of the Milky Way moves just as predicted by Einstein’s theory of general relativity. Its orbit is shaped like a rosette and not like an ellipse as predicted by Newton's theory of gravity. This effect, known as Schwarzschild precession, had never before been measured for a star around a supermassive black hole. This artist’s impression illustrates the precession of the star’s orbit, with the effect exaggerated for easier visualisation.

At the center of our galaxy, roughly 26,000 light-years from Earth, is the Supermassive Black Hole (SMBH) known as Sagittarius A*. The powerful gravity of this object and the dense cluster of stars around it provide astronomers with a unique environment for testing physics under the most extreme conditions. In particular, it offers them a chance to test Einstein’s Theory of General Relativity (GR).

For example, in the past thirty years, astronomers have been observing a star in the vicinity of Sagittarius A* (S2) to see if its orbit conforms to what is predicted by General Relativity. Recent observations made with the ESO’s Very Large Telescope (VLT) have completed an observation campaign that confirmed that the star’s orbit is rosette-shaped, once again proving that Einstein theory was right on the money!

Continue reading “A Star is Orbiting the Milky Way’s Black Hole and Moving Exactly How Einstein Predicted it Should”

Astronomers Might Have Imaged a Second Planet Around Nearby Proxima Centauri – and it Might Have a Huge Set of Rings

An artist's illustration of the Proxima Centauri system. Proxima b is on the left, while Proxima C is on the right. Image Credit: Lorenzo Santinelli

In 2016, astronomers working for the European Southern Observatory (ESO) confirmed the existence of a terrestrial planet around Earth’s closest stellar neighbor – Proxima Centauri. The discovery of this nearby extrasolar planet (Proxima b) caused no shortage of excitement because, in addition to being similar in size to Earth, it was found to orbit within the star’s habitable zone (HZ).

Thanks to an INAF-led team, a second exoplanet (a super-Earth) was found early this year around Proxima Centauri using the Radial Velocity Method. Based on the separation between the two planets, another INAF-led team attempted to observe this planet using the Direct Imaging Method. While not entirely successful, their observations raise the possibility that this planet has a system of rings around it, much like Saturn.

Continue reading “Astronomers Might Have Imaged a Second Planet Around Nearby Proxima Centauri – and it Might Have a Huge Set of Rings”

Your Umbrella is Insufficient on a Planet Where it Rains Iron

Work by the Geneva cartoonist Frederik Peeters: «Singing in the Iron Rain: An Evening on WASP-76b». (Detail - © Frederik Peeters)

Imagine a planet where it rained iron. Sounds impossible. But on one distant exoplanet, which is tidally locked to its star, the nightside has to contend with a ferrous downpour.

Continue reading “Your Umbrella is Insufficient on a Planet Where it Rains Iron”

Black Holes Were Already Feasting Just 1.5 Billion Years After the Big Bang

This illustration depicts a gas halo surrounding a quasar in the early Universe. The quasar, in orange, has two powerful jets and a supermassive black hole at its centre, which is surrounded by a dusty disc. The gas halo of glowing hydrogen gas is represented in blue. A team of astronomers surveyed 31 distant quasars, seeing them as they were more than 12.5 billion years ago, at a time when the Universe was still an infant, only about 870 million years old. They found that 12 quasars were surrounded by enormous gas reservoirs: halos of cool, dense hydrogen gas extending 100 000 light years from the central black holes and with billions of times the mass of the Sun. These gas stashes provide the perfect food source to sustain the growth of supermassive black holes in the early Universe.

Thanks to the vastly improved capabilities of today’s telescopes, astronomers have been probing deeper into the cosmos and further back in time. In so doing, they have been able to address some long-standing mysteries about how the Universe evolved since the Big Bang. One of these mysteries is how supermassive black holes (SMBHs), which play a crucial role in the evolution of galaxies, formed during the early Universe.

Using the ESO’s Very Large Telescope (VLT) in Chile, an international team of astronomers observed galaxies as they appeared about 1.5 billion years after the Big Bang (ca. 12.5 billion years ago). Surprisingly, they observed large reservoirs of cool hydrogen gas that could have provided a sufficient “food source” for SMBHs. These results could explain how SMBHs grew so fast during the period known as the Cosmic Dawn.

Continue reading “Black Holes Were Already Feasting Just 1.5 Billion Years After the Big Bang”

100,000 Supernovae Exploded Near the Core of the Milky Way

Taken with the HAWK-I instrument on ESO’s Very Large Telescope in the Chilean Atacama Desert, this stunning image shows the Milky Way’s central region with an angular resolution of 0.2 arcseconds. This means the level of detail picked up by HAWK-I is roughly equivalent to seeing a football (soccer ball) in Zurich from Munich, where ESO’s headquarters are located. The image combines observations in three different wavelength bands. The team used the broadband filters J (centred at 1250 nanometres, in blue), H (centred at 1635 nanometres, in green), and Ks (centred at 2150 nanometres, in red), to cover the near infrared region of the electromagnetic spectrum. By observing in this range of wavelengths, HAWK-I can peer through the dust, allowing it to see certain stars in the central region of our galaxy that would otherwise be hidden.   

Thanks to the latest generation of sophisticated telescopes, astronomers are learning things a great deal about our Universe. The improved resolution and observational power of these instruments also allow astronomers to address previously unanswered questions. Many of these telescopes can be found in the Atacama Desert in Chile, where atmospheric interference is minimal and the cosmos can be seen with greater clarity.

It is here that the European Southern Observatory (ESO) maintains many observatories, not the least of which is the Paranal Observatory where the Very Large Telescope (VLT) resides. Recently, an international team of astronomers used the VLT to study the center of the Milky Way and observed evidence of ancient starbursts. These indicate that the central region of our galaxy experienced an intense period of star birth in the past.

Continue reading “100,000 Supernovae Exploded Near the Core of the Milky Way”

Asteroid Hygiea is Round Enough That it Could Qualify as a Dwarf Planet, the Smallest in the Solar System

A new SPHERE/VLT image of Hygiea, which could be the Solar System’s smallest dwarf planet yet. As an object in the main asteroid belt, Hygiea satisfies right away three of the four requirements to be classified as a dwarf planet: it orbits around the Sun, it is not a moon and, unlike a planet, it has not cleared the neighbourhood around its orbit. The final requirement is that it have enough mass that its own gravity pulls it into a roughly spherical shape. This is what VLT observations have now revealed about Hygiea.

Within the Main Asteroid Belt, there are a number of larger bodies that have defied traditional classification. The largest among them is Ceres, which is followed by Vesta, Pallas, and Hygeia. Until recently, Ceres was thought to be the only object in the Main Belt large enough to undergo hydrostatic equilibrium – where an object is sufficiently massive that its gravity causes it to collapse into a roughly spherical shape.

However, it now seems that there is another body in the Main Belt that has earned the designation of “dwarf planet”. Using data from the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument at the Very Large Telescope (VLT), an international team of astronomers found compelling evidence that Hygeia is actually round, making it the smallest dwarf planet in the Solar System.

Continue reading “Asteroid Hygiea is Round Enough That it Could Qualify as a Dwarf Planet, the Smallest in the Solar System”

Astronomers See Strontium in the Kilonova Wreckage, Proof that Neutron Star Collisions Manufacture Heavy Elements in the Universe

A team of European researchers, using data from the X-shooter instrument on ESO’s Very Large Telescope, has found signatures of strontium formed in a neutron-star merger. This artist’s impression shows two tiny but very dense neutron stars at the point at which they merge and explode as a kilonova. In the foreground, we see a representation of freshly created strontium. Image Credit: ESO/L. Calçada/M. Kornmesser

Astronomers have spotted Strontium in the aftermath of a collision between two neutron stars. This is the first time a heavy element has ever been identified in a kilonova, the explosive aftermath of these types of collisions. The discovery plugs a hole in our understanding of how heavy elements form.

Continue reading “Astronomers See Strontium in the Kilonova Wreckage, Proof that Neutron Star Collisions Manufacture Heavy Elements in the Universe”

Here’s a First. Astronomers See a Moon Forming Around a Baby Exoplanet

A color-enhanced image of millimeter-wave radio signals from the ALMA observatory in Chile shows a disk of gas and dust (right of center) around exoplanet PDS 70 c, the first-ever observation of the kind of circumplanetary disk that is believed to have birthed the moons of Jupiter more than 4 billion years ago. CREDIT A. Isella, ALMA (ESO/NAOJ/NRAO))

Astronomers have discovered, for the first time, moons forming in the disk of debris around a large exoplanet. Astronomers have suspected for a long time that this is how larger planets—like Jupiter in our own Solar System—get their moons. It’s all happening around a very young star named PDS 70, about 370 light years away in the constellation Centaurus.

Continue reading “Here’s a First. Astronomers See a Moon Forming Around a Baby Exoplanet”