What is the Difference Between Lava and Magma?

Lava fountain in Hawaii.

Few forces in nature are are impressive or frightening as a volcanic eruption. In an instant, from within the rumbling depths of the Earth, hot lava, steam, and even chunks of hot rock are spewed into the air, covering vast distances with fire and ash. And thanks to the efforts of geologists and Earth scientists over the course of many centuries, we have to come to understand a great deal about them.

However, when it comes to the nomenclature of volcanoes, a point of confusion often arises. Again and again, one of the most common questions about volcanoes is, what is the difference between lava and magma? They are both molten rock, and are both associated with volcanism. So why the separate names? As it turns out, it all comes down to location.

Earth’s Composition:

As anyone with a basic knowledge of geology will tell you, the insides of the Earth are very hot. As a terrestrial planet, its interior is differentiated between a molten, metal core, and a mantle and crust composed primarily of silicate rock. Life as we know it, consisting of all vegetation and land animals, live on the cool crust, whereas sea life inhabits the oceans that cover a large extent of this same crust.

The Earth's layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com
The Earth’s layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com

However, the deeper one goes into the planet, both pressures and temperatures increase considerably. All told, Earth’s mantle extends to a depth of about 2,890 km, and is composed of silicate rocks that are rich in iron and magnesium relative to the overlying crust. Although solid, the high temperatures within the mantle cause pockets of molten rock to form.

This silicate material is less dense than the surrounding rock, and is therefore sufficiently ductile that it can flow on very long timescales. Over time, it will also reach the surface as geological forces push it upwards. This happens as a result of tectonic activity.

Basically, the cool, rigid crust is broken into pieces called tectonic plates. These plates are rigid segments that move in relation to one another at one of three types of plate boundaries. These are known as convergent boundaries, at which two plates come together; divergent boundaries, at which two plates are pulled apart; and transform boundaries, in which two plates slide past one another laterally.

Interactions between these plates are what is what is volcanic activity (best exemplified by the “Pacific Ring of Fire“) as well as mountain-building. As the tectonic plates migrate across the planet, the ocean floor is subducted – the leading edge of one plate pushing under another. At the same time, mantle material will push up at divergent boundaries, forcing molten rock to the surface.

The Earth's Tectonic Plates. Credit: msnucleus.org
The Earth’s Tectonic Plates. Credit: msnucleus.org

Magma:

As already noted, both lava and magma are what results from rock superheated to the point where it becomes viscous and molten. But again, the location is the key. When this molten rock is still located within the Earth, it is known as magma. The name is derived from Greek, which translate to “thick unguent” (a word used to describe a viscous substance used for ointments or lubrication).

It is composed of molten or semi-molten rock, volatiles, solids (and sometimes crystals) that are found beneath the surface of the Earth. This vicious rock usually collects in a magma chamber beneath a volcano, or solidify underground to form an intrusion. Where it forms beneath a volcano, it can then be injected into cracks in rocks or issue out of volcanoes in eruptions. The temperature of magma ranges between 600 °C and 1600 °C.

Magma is also known to exist on other terrestrial planets in the Solar System (i.e. Mercury, Venus and Mars) as well as certain moons (Earth’s Moon and Jupiter’s moon Io). In addition to stable lava tubes being observed on Mercury, the Moon and Mars, powerful volcanoes have been observed on Io that are capable of sending lava jets 500 km (300 miles) into space.

Igneous rock (aka. "fire rock") is formed from cooled and solidified magma. Credit: geologyclass.org
Igneous rock (aka. “fire rock”) is formed from cooled and solidified lava. Credit: geologyclass.org

Lava:

When magma reaches the surface and erupts from a volcano, it officially becomes lava. There are actually different kinds of lava depending on its thickness or viscosity. Whereas the thinnest lava can flow downhill for many kilometers (thus creating a gentle slope), thicker lavas will pile up around a  volcanic vent and hardly flow at all. The thickest lava doesn’t even flow, and just plugs up the throat of a volcano, which in some cases cause violent explosions.

The term lava is usually used instead of lava flow. This describes a moving outpouring of lava, which occurs when a non-explosive effusive eruption takes place. Once a flow has stopped moving, the lava solidifies to form igneous rock. Although lava can be up to 100,000 times more viscous than water, lava can flow over great distances before cooling and solidifying.

The word “lava” comes from Italian, and is probably derived from the Latin word labes which means “a fall” or “slide”. The first use in connection with a volcanic event was apparently in a short written account by Franscesco Serao, who observed the eruption of Mount Vesuvius between May 14th and June 4th, 1737. Serao described “a flow of fiery lava” as an analogy to the flow of water and mud down the flanks of the volcano following heavy rain.

Such is the difference between magma and lava. It seems that in geology, as in real estate, its all about location!

We have written many articles about volcanoes here at Universe Today. Here’s What is Lava?, What is the Temperature of Lava?, Igneous Rocks: How Are They Formed?, What Are The Different Parts Of A Volcano? and Planet Earth.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.

The Moon’s Other Axis

A six degree True Polar Wander occurred on the Moon due to ancient volcanic activity. Image: University of Arizona/James Tuttle Keane
A six degree True Polar Wander occurred on the Moon due to ancient volcanic activity. Image: University of Arizona/James Tuttle Keane

It’s tempting to think that the Moon never changes. You can spend your whole life looking at it, and see no evidence of change whatsoever. In fact, the ancients thought the whole Universe was unchanging.

You may have heard of a man named Aristotle. He thought the Universe was eternal and unchanging. Obviously, with our knowledge of the Big Bang, stellar evolution, and planetary formation, we know better. Still, the placid and unchanging face of the Moon can tempt us into thinking astronomers are making up all this evolving universe stuff.

But now, according to a new paper in Nature, the Moon’s axis of rotation is different now than it was billions of years ago. Not only that, but volcanoes may been responsible for it. Volcanoes! On our placid little Moon.

The clue to this lunar True Polar Wander (TPW) is in the water ice locked in the shadows of craters on the Moon. When hydrogen was discovered on the surface of the Moon in the 1990s by the Lunar Prospector probe, scientists suspected that they would eventually find water ice. Subsequent missions proved the presence of water ice, especially in craters near the polar regions. But the distribution of that water-ice wasn’t uniform.

You would expect to see ice uniformly distributed in the shadows of craters in the polar regions, but that’s not what scientists have found. Instead, some craters had no evidence of ice at all, which led the team behind this paper to conclude that these ice-free craters must have been exposed to the Sun at some point. What else would explain it?

The way that the ice in these craters is distributed forms two trails that lead away from each pole. They’re mirror images of each other, but they don’t conform with the Moon’s current axis of rotation, which is what led the team to conclude that the Moon underwent a 6 degree TPW billions of years ago.

The paper also highlights the age of the water on the Moon. Since the TPW, and the melting of some of the ice as a result of it, occurred some billions of years ago, then the water ice that is still frozen in the shadows of some of the Moon’s craters must be ancient. According to the paper, its existence records the “early delivery of water to the inner Solar System.” Hopefully, a future mission will return a sample of this ancient water for detailed study.

But even more interesting than the age of the ice in the craters and the TPW, to me anyways, is what is purported to have caused it. The team behind the paper reports that volcanic activity on the Moon in the Procellarum region, which was most active in the early history of the Moon, moved a substantial amount of material and “altered the density structure of the Moon.” This alteration would have changed the moments of inertia on the Moon, resulting in a TPW.

It’s strange to think of the Moon with volcanic activity viewable from Earth. I wonder what effect visible lunar volcanoes would have had on thinkers like Aristotle, if lunar volcanic activity had occurred during recorded history, rather than ending one billion years ago or so.

We know that events like eclipses and comets caused great confusion and sometimes upheaval in ancient civilizations. Would lunar volcanoes have had the same effect?

What Are The Benefits Of Volcanoes?

Tungurahua ("throat of fire"), an active stratovolcano in Ecuador. Credit: Patrick Taschler

Volcanoes are renowned for their destructive power. In fact, there are few forces of nature that rival their sheer, awesome might, or have left as big of impact on the human psyche. Who hasn’t heard of tales of Mt. Vesuvius erupting and burying Pompeii? There’s also the Minoan Eruption, the eruption that took place in the 2nd millennium BCE on the isle of Santorini and devastated the Minoan settlement there.

In Japan, Hawaii, South American and all across the Pacific, there are countless instances of eruptions taking a terrible toll. And who can forget modern-day eruptions like Mount St. Helens? But would it surprise you to know that despite their destructive power, volcanoes actually come with their share of benefits? From enriching the soil to creating new landmasses, volcanoes are actually a productive force as well.

Soil Enrichment:

Volcanic eruptions result in ash being dispersed over wide areas around the eruption site. And depending on the chemistry of the magma from which it erupted, this ash will be contain varying amounts of soil nutrients. While the most abundant elements in magma are silica and oxygen, eruptions also result in the release of water, carbon dioxide (CO²), sulfur dioxide (SO²), hydrogen sulfide (H²S), and hydrogen chloride (HCl), amongst others.

In addition, eruptions release bits of rock such as potolivine, pyroxene, amphibole, and feldspar, which are in turn rich in iron, magnesium, and potassium. As a result, regions that have large deposits of volcanic soil (i.e. mountain slopes and valleys near eruption sites) are quite fertile. For example, most of Italy has poor soils that consist of limestone rock.

The area around the volcano is now densely populated. Credit: Wikipedia Commons/Jeffmatt
The area around the volcano is now densely populated. Credit: Wikipedia Commons/Jeffmatt

But in the regions around Naples (the site of Mt. Vesuvius), there are fertile stretches of land that were created by volcanic eruptions that took place 35,000 and 12,000 years ago. The soil in this region is rich because volcanic eruption deposit the necessary minerals, which are then weathered and broken down by rain. Once absorbed into the soil, they become a steady supply of nutrients for plant life.

Hawaii is another location where volcanism led to rich soil, which in turn allowed for the emergence of thriving agricultural communities. Between the 15th and 18th centuries on the islands of Kauai, O’ahu and Molokai, the cultivation of crops like taros and sweet potatoes allowed for the rise of powerful chiefdoms and the flowering of the culture we associate with Hawaii today.

Volcanic Land Formations:

In addition to scattering ash over large areas of land, volcanoes also push material to the surface that can result in the formation of new islands. For example, the entire Hawaiian chain of islands was created by the constant eruptions of a single volcanic hot spot. Over hundreds of thousands of years, these volcanoes breached the surface of the ocean becoming habitable islands, and rest stops during long sea journeys.

This is the case all across the Pacific, were island chains such as Micronesia, the Ryukyu Islands (between Taiwan and Japan), the Aleutian Islands (off the coast of Alaska), the Mariana Islands, and Bismark Archipelago were all formed along arcs that are parallel and close to a boundary between two converging tectonic plates.

The island of Santorini, Greece. Credit: EOS/NASA/ Public Domain
The island of Santorini, Greece. Credit: EOS/NASA/ Public Domain

Much the same is true of the Mediterranean. Along the Hellenic Arc (in the eastern Mediterranean), volcanic eruptions led to the creation of the Ionian Islands, Cyprus and Crete. The nearby South Aegean Arc meanwhile led to the formation of Aegina, Methana, Milos, Santorini and Kolumbo, and Kos, Nisyros and Yali. And in the Caribbean, volcanic activity led to the creation of the Antilles archipelago.

Where these islands formed, unique species of plants and animals evolved into new forms on these islands, creating balanced ecosystems and leading to new levels of biodiversity.

Volcanic Minerals and Stones:

Another benefits to volcanoes are the precious gems, minerals and building materials that eruptions make available. For instance, stones like pumice volcanic ash and perlite (volcanic glass) are all mined for various commercial uses. These include acting as abrasives in soaps and household cleaners. Volcanic ash and pumice are also used as a light-weight aggregate for making cement.

The finest grades of these volcanic rocks are used in metal polishes and for woodworking. Crushed and ground pumice are also used for loose-fill insulation, filter aids, poultry litter, soil conditioner, sweeping compound, insecticide carrier, and blacktop highway dressing.

The roof of the Pantheon, as seen from nearby rooftops in Roe. Credit: Public Domain/Anthony Majanlahti
The roof of the Pantheon, as seen from nearby rooftops in Roe. Credit: Public Domain/Anthony Majanlahti

Perlite is also used as an aggregate in plaster, since it expands rapidly when heated. In precast walls, it too is used as an aggregate in concrete. Crushed basalt and diasbase are also used for road metal, railroad ballast, roofing granules, or as protective arrangements for shorelines (riprap). High-density basalt and diabase aggregate are used in the concrete shields of nuclear reactors.

Hardened volcanic ash (called tuff) makes an especially strong, lightweight building material. The ancient Romans combined tuff and lime to make a strong, lightweight concrete for walls, and buildings. The roof of the Pantheon in Rome is made of this very type of concrete because it’s so lightweight.

Precious metals that are often found in volcanoes include sulfur, zinc, silver, copper, gold, and uranium. These metals have a wide range of uses in modern economies, ranging from fine metalwork, machinery and electronics to nuclear power, research and medicine. Precious stones and minerals that are found in volcanoes include opals, obsidian, fire agate, flourite, gypsum, onyx, hematite, and others.

Global Cooling:

Volcanoes also play a vital role in periodically cooling off the planet. When volcanic ash and compounds like sulfur dioxide are released into the atmosphere, it can reflect some of the Sun’s rays back into space, thereby reducing the amount of heat energy absorbed by the atmosphere. This process, known as “global dimming”, therefore has a cooling effect on the planet.

Sarychev volcano, (located in Russia's Kuril Islands, northeast of Japan) in an early stage of eruption on June 12, 2009. Credit: NASA
Sarychev volcano, (located in Russia’s Kuril Islands, northeast of Japan) in an early stage of eruption on June 12, 2009. Credit: NASA

The link between volcanic eruptions and global cooling has been the subject of scientific study for decades. In that time, several dips have been observed in global temperatures after large eruptions. And though most ash clouds dissipate quickly, the occasional prolonged period of cooler temperatures have been traced to particularly large eruptions.

Because of this well-established link, some scientists have recommended that sulfur dioxide and other  be released into the atmosphere in order to combat global warming, a process which is known as ecological engineering.

Hot Springs And Geothermal Energy:

Another benefit of volcanism comes in the form of geothermal fields, which is an area of the Earth characterized by a relatively high heat flow. These fields, which are the result of present, or fairly recent magmatic activity, come in two forms. Low temperature fields (20-100°C) are due to hot rock below active faults, while high temperature fields (above 100°C) are associated with active volcanism.

Geothermal fields often create hot springs, geysers and boiling mud pools, which are often a popular destination for tourists. But they can also be harnessed for geothermal energy, a form of carbon-neutral power where pipes are placed in the Earth and channel steam upwards to turn turbines and generate electricity.

Steam rising from the Nesjavellir Geothermal Power Station in Iceland. Credit: Gretar Ívarsson/Fir0002
Steam rising from the Nesjavellir Geothermal Power Station in Iceland. Credit: Gretar Ívarsson/Fir0002

In countries like Kenya, Iceland, New Zealand, the Phillipines, Costa Rica and El Salvador, geothermal power is responsible for providing a significant portion of the country’s power supply – ranging from 14% in Costa Rica to 51% in Kenya. In all cases, this is due to the countries being in and around active volcanic regions that allow for the presence of abundant geothermal fields.

Outgassing and Atmospheric Formation:

But by far, the most beneficial aspect of volcanoes is the role they play in the formation of a planet’s atmosphere. In short, Earth’s atmosphere began to form after its formation 4.6 billion eyars ago, when volcanic outgassing led to the creation of gases stored in the Earth’s interior to collect around the surface of the planet. Initially, this atmosphere consisted of hydrogen sulfide, methane, and 10 to 200 times as much carbon dioxide as today’s atmosphere.

After about half a billion years, Earth’s surface cooled and solidified enough for water to collect on it. At this point, the atmosphere shifted to one composed of water vapor, carbon dioxide and ammonia (NH³). Much of the carbon dioxide dissolved into the oceans, where cyanobacteria developed to consume it and release oxygen as a byproduct. Meanwhile, the ammonia began to be broken down by photolysis, releasing the hydrogen into space and leaving the nitrogen behind.

Another key role played by volcanism occurred 2.5 billion years ago, during the boundary between the Archaean and Proterozoic Eras. It was at this point that oxygen began to appear in our oxygen due to photosynthesis – which is referred to asthe “Great Oxidation Event”. However, according to recent geological studies, biomarkers indicate that oxygen-producing cyanobacteria were releasing oxygen at the same levels there are today. In short, the oxygen being produced had to be going somewhere for it not to appear in the atmosphere.

Roughly 2.5 billion years ago, towards the end of the Archaean Era, oxidation of our atmosphere began. Credit: ocean.si.edu
Roughly 2.5 billion years ago, towards the end of the Archaean Era, oxidation of our atmosphere began. Credit: ocean.si.edu

The lack of terrestrial volcanoes is believed to be responsible. During the Archaean Era, there were only submarine volcanoes, which had the effect of scrubbing oxygen from the atmosphere, binding it into oxygen containing minerals. By the Archaean/Proterozoic boundary, stabilized continental land masses arose, leading to terrestrial volcanoes. From this point onward, markers show that oxygen began appearing in the atmosphere.

Volcanism also plays a vital role in the atmospheres of other planets. Mercury’s thin exosphere of hydrogen, helium, oxygen, sodium, calcium, potassium and water vapor is due in part of volcanism, which periodically replenishes it. Venus’ incredibly dense atmosphere is also believed to be periodically replenished by volcanoes on its surface.

And Io, Jupiter’s volcanically active moon, has an extremely tenuous atmosphere of sulfur dioxide (SO²), sulfur monoxide (SO), sodium chloride (NaCl), sulfur monoxide (SO), atomic sulfur (S) and oxygen (O). All of these gases are provided and replenished by the many hundreds of volcanoes situated across the moon’s surface.

As you can see, volcanoes are actually a pretty creative force when all is said and done. In fact, us terrestrial organisms depend on them for everything from the air we breathe, to the rich soil that produces our food, to the geological activity that gives rise to terrestrial renewal and biological diversity.

We have written many articles about volcanoes for Universe Today. Here’s an article about extinct volcanoes, and here’s an article about active volcanoes. Here’s an article about volcanoes.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

Astronomy Cast also has relevant episodes on the subject Earth, as part of our tour through the Solar System – Episode 51: Earth.

 

10 Interesting Facts About Volcanoes

A view of the Villarrica Volcano's Eruption In Chile on March 3, 2-15. Credit: Ariel Marinkovic/EPA /Landov.

Want some volcano facts? Here are 10 interesting facts about volcanoes. Some of these facts you’ll know, and others may surprise you. Whatever the case, volcanoes are amazing features of nature that demand our respect.

1. There are Three Major Kinds of Volcanoes:

Although volcanoes are all made from hot magma reaching the surface of the Earth and erupting, there are different kinds. Shield volcanoes have lava flows with low viscosity that flow dozens of kilometers; this makes them very wide with smoothly sloping flanks.

Stratovolcanoes are made up of different kinds of lava, and eruptions of ash and rock and grow to enormous heights. Cinder cone volcanoes are usually smaller, and come from short-lived eruptions that only make a cone about 400 meters high.

2. Volcanoes Erupt Because of Escaping Magma:

About 30 km beneath your feet is the Earth’s mantle. It’s a region of superhot rock that extends down to the Earth’s core. This region is so hot that molten rock can squeeze out and form giant bubbles of liquid rock called magma chambers. This magma is lighter than the surrounding rock, so it rises up, finding cracks and weakness in the Earth’s crust.

Lava fountain in Hawaii.
Lava fountain in Hawaii. Image Credit: Jim D. Griggs/HVO/USGS

When it finally reaches the surface, it erupts out of the ground as lava, ash, volcanic gasses and rock. It’s called magma when it’s under the ground, and lava when it erupts onto the surface.

3. Volcanoes can be Active, Dormant or Extinct:

An active volcano is one that has had an eruption in historical times (in the last few thousand years). A dormant volcano is one that has erupted in historical times and has the potential to erupt again, it just hasn’t erupted recently. An extinct volcano is one that scientists think probably won’t erupt again. Here’s more information on the active volcanoes in the world.

4. Volcanoes can Grow Quickly:

Although some volcanoes can take thousands of years to form, others can grow overnight. For example, the cinder cone volcano Paricutin appeared in a Mexican cornfield on February 20, 1943. Within a week it was 5 stories tall, and by the end of a year it had grown to more than 336 meters tall. It ended its grown in 1952, at a height of 424 meters. By geology standards, that’s pretty quick.

Detailed View of Ash Plume at Eyjafjallajökull Volcano
Detailed view from space of the ash plume caused by the Eyjafjallajökull volcano in 2010. Credit: NASA

5. There are 20 Volcanoes Erupting Right Now:

Somewhere, around the world, there are likely about 20 active volcanoes erupting as you’re reading this. Some are experiencing new activity, others are ongoing. Between 50-70 volcanoes erupted last year, and 160 were active in the last decade. Geologists estimate that 1,300 erupted in the last 10,000 years.

Three quarters of all eruptions happen underneath the ocean, and most are actively erupting and no geologist knows about it at all. One of the reasons is that volcanoes occur at the mid ocean ridges, where the ocean’s plates are spreading apart. If you add the underwater volcanoes, you get an estimate that there are a total of about 6,000 volcanoes that have erupted in the last 10,000 years.

6. Volcanoes are Dangerous:

But then you knew that. Some of the most deadly volcanoes include Krakatoa, which erupted in 1883, releasing a tsunami that killed 36,000 people. When Vesuvius exploded in AD 79, it buried the towns of Pompeii and Herculaneum, killing 16,000 people.

Image of Mt. Vesuvius, captured in 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Credit: NASA/EO
Image of Mt. Vesuvius, captured in 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. Credit: NASA/EO

Mount Pelee, on the island of Martinique destroyed a town with 30,000 people in 1902. The most dangerous aspect of volcanoes are the deadly pyroclastic flows that blast down the side of a volcano during an eruption. These contain ash, rock and water moving hundreds of kilometers an hour, and hotter than 1,000 degrees C.

7. Supervolcanoes are Really Dangerous:

Geologists measure volcano eruptions using the Volcano Explosivity Index, which measures the amount of material released. A “small” eruption like Mount St. Helens was a 5 out of 8, releasing a cubic kilometer of material. The largest explosion on record was Toba, thought to have erupted 73,000 years ago.

It released more than 1,000 cubic kilometers of material, and created a caldera 100 km long and 30 kilometers wide. The explosion plunged the world into a world wide ice age. Toba was considered an 8 on the VEI.

8. The Tallest Volcano in the Solar System isn’t on Earth:

That’s right, the tallest volcano in the Solar System isn’t on Earth at all, but on Mars. Olympus Mons, on Mars, is a giant shield volcano that rises to an elevation of 27 km, and it measures 550 km across. Scientists think that Olympus Mons was able to get so large because there aren’t any plate tectonics on Mars. A single hotspot was able to bubble away for billions of years, building the volcano up bigger and bigger.

Mauna Kea
Mauna Kea observed from space. Credit: NASA/EO

9. The Tallest and Biggest Volcanoes on Earth are side by side:

The tallest volcano on Earth is Hawaii’s Mauna Kea, with an elevation of 4,207 meters. It’s only a little bigger than the largest volcano on Earth, Mauna Loa with an elevation of only 4,169 meters. Both are shield volcanoes that rise up from the bottom of the ocean. If you could measure Mauna Kea from the base of the ocean to its peak, you’d get a true height of 10,203 meters (and that’s bigger than Mount Everest).

10. The Most Distant Point from the Center of the Earth is a Volcano:

You might think that the peak of Mount Everest is the most distant point from the center of the Earth, but that’s not true. Instead, it’s the volcano Chimborazo in Ecuador. That’s because the Earth is spinning in space and is flattened out. Points at the equator are further from the center of the Earth than the poles. And Chimborazo is very close to the Earth’s equator.

We have written many articles about volcanoes for Universe Today. Here’s an article that tackles about the 10 facts about earth’s core. You might also want to read on the 10 facts about earth. And here’s more: all about volcanoes.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.

Reference:
USGS Volcano Hazards Program

Interesting Facts About Venus

False color radar topographical map of Venus provided by Magellan. Credit: Magellan Team/JPL/NASA

Venus was once considered a twin to Earth, as it’s roughly the same size and is relatively close to our planet. But once astronomers looked at it seriously in the past half-century or so, a lot of contrasts emerged. The biggest one — Venus is actually a hothouse planet with a runaway greenhouse effect, making it inhospitable to life as we know it. Here are some more interesting facts about Venus.

1. Venus’ atmosphere killed spacecraft dead very quickly:
You sure don’t want to hang around on Venus’ surface. The pressure there is so great that spacecraft need shielding to survive. The atmosphere is made up of carbon dioxide with bits of sulfuric acid, NASA says, which is deadly to humans. And if that’s not bad enough, the temperature at the surface is higher than 470 degrees Celsius (880 degrees Fahrenheit). The Soviet Venera probes that ventured to the surface decades ago didn’t last more than two hours.

2. But conditions are more temperate higher in the atmosphere:
While you still couldn’t breathe the atmosphere high above Venus’ surface, at about  50 kilometers (31 miles) you’ll at least find the same pressure and atmosphere density as that of Earth. A very preliminary NASA study suggests that at some point, we could deploy airships for humans to explore Venus. And the backers suggest it may be more efficient to go to Venus than to Mars, with one large reason being that Venus is closer to Earth.

Artist's conception of the High Altitude Venus Operational Concept (HAVOC) mission, a far-out concept being developed by NASA, approaching the planet. Credit: NASA Langley Research Center/YouTube (screenshot)
Artist’s conception of the High Altitude Venus Operational Concept (HAVOC) mission, a far-out concept being developed by NASA, approaching the planet. Credit: NASA Langley Research Center/YouTube (screenshot)

3. Venus is so bright it is sometimes mistaken for a UFO:
The planet is completely socked in by cloud, which makes it extremely reflective to observers looking at the sky on Earth. Its brightness is between -3.8 and -4.8 magnitude, which makes it brighter than the stars in the sky. In fact, it’s so bright that you can see it go through phases in a telescope — and it can cast shadows! So that remarkable appearance can confuse people not familiar with Venus in the sky, leading to reports of airplanes or UFOs.

4. And those clouds mean you can’t see the surface:
If you were to look at Venus with your eyes, you wouldn’t be able to see its surface. That’s because the clouds are so thick that they obscure what is below. NASA got around that problem when it sent the Magellan probe to Venus for exploration in the 1990s. The probe orbited the planet and got a complete surface picture using radar.

Artist's impression of the surface of Venus Credit: ESA/AOES
Artist’s impression of the surface of Venus Credit: ESA/AOES

5. Venus has volcanoes and a fresh face:
Venus has fresh lava flows on its surface, which implies that volcanoes erupted anywhere from the past few hundred years to the past three million years. What this means is there are few impact craters on the surface, likely because the lava flowed over them and filled them in. While scientists believe the volcanoes are responsible, the larger question is how frequently this occurs.

6. Venus has a bizarre rotation:
Venus not only rotates backwards compared to the other planets, but it rotates very slowly. In fact, a day on Venus (243 days) lasts longer than it takes the planet to orbit around the Sun (225 days). Even more strangely, the rotation appears to be slowing down; Venus is turning 6.5 minutes more slowly in 2014 than in the early 1990s. One theory for the change could be the planet’s weather; its thick atmosphere may grind against the surface and slow down the rotation.

Artist's conception of Venus Express doing an aerobraking maneuver in the atmosphere in 2014. Credit: ESA–C. Carreau
Artist’s conception of Venus Express doing an aerobraking maneuver in the atmosphere in 2014. Credit: ESA–C. Carreau

7. Venus has no moons or rings:
The two planets closest to the Sun have no rings or moons, which puts Venus in the company of only one other world: Mercury. Every other planet in the Solar System has one or the other, or in many cases both! Why this is is a mystery to scientists, but they are doing as much comparison of different planets as possible to understand what’s going on.

8. Venus appears to be a spot where spacecraft go to extremes:
We briefly mentioned the Venera probes that landed on the surface, but that’s not the only unusual spacecraft activity at Venus. In 2014, the European Space Agency put an orbiter — that’s right, a spacecraft not designed to survive the atmosphere — into the upper parts of Venus’ dense atmosphere. Venus Express did indeed survive the encounter (before it ran out of gas), with the goal of providing more information about how the atmosphere looks at high altitudes. This could help with landings in the future.

As you can see, Venus is an interesting, mysterious, and extremely hostile world. With such a corrosive atmosphere, such incredible heat, a volcanically-scarred surface, and thick clouds of toxic gas, one would have to be crazy to want to live there. And yet, there are some who believe Venus could be terraformed for human use, or at the very least explored using airships, in the coming generations.

But that’s the thing about interesting places. Initially, they draw their fair share of research and attention. But eventually, the dreamers and adventurers come.

Robots Exploring Alien Volcanoes? NASA Lab Hopes To Get There One Day

Olympus Mons from Orbit
Olympus Mons from orbit. Credit: NASA

We’ve seen volcanoes or geysers erupting on the moons of Io and Enceladus. Volcanic remnants remain on Mars and the Moon. But it’s tough for rovers to get inside these challenging environments.

So NASA’s Jet Propulsion Laboratory is trying out a new robot here on Earth to one day, they hope, get inside volcanoes elsewhere in the Solar System.

The series is called VolcanoBot. The first prototype was tested last year inside the the active Kilauea volcano in Hawaii, and a second is set for further work later this year.

As you can see in the picture below, VolcanoBot has a set of small wheels and a host of electronics inside. The goal is to create 3-D maps of the environments in which they roam. And early results are showing some promise, NASA noted in a press release: VolcanoBot discovered the fissure it was exploring did not completely close up, which is something they did not expect.

The Jet Propulsion Laboratory's VolcanoBot 1 inside a lava tube at the Kilauea volcano in Hawaii. Credit: NASA/JPL-Caltech
The Jet Propulsion Laboratory’s VolcanoBot 1 inside a lava tube at the Kilauea volcano in Hawaii. Credit: NASA/JPL-Caltech

“We don’t know exactly how volcanoes erupt. We have models but they are all very, very simplified. This project aims to help make those models more realistic,” stated Carolyn Parcheta, a NASA postdoctoral fellow at the Jet Propulsion Laboratory in California who is leading the research.

“In order to eventually understand how to predict eruptions and conduct hazard assessments, we need to understand how the magma is coming out of the ground,” she added. “This is the first time we have been able to measure it directly, from the inside, to centimeter-scale accuracy.”

The research will continue this year with VolcanoBot 2, which has less mass, less size and has an advanced “vison center” that can turn about.

Artist's impression of the Cassini spacecraft making a close pass by Saturn's inner moon Enceladus to study plumes from geysers that erupt from giant fissures in the moon's southern polar region. Copyright 2008 Karl Kofoed/NASA. Click for full size version.
Artist’s impression of the Cassini spacecraft making a close pass by Saturn’s inner moon Enceladus to study plumes from geysers that erupt from giant fissures in the moon’s southern polar region. Copyright 2008 Karl Kofoed/NASA. Click for full size version.

Parcheta’s research recently attracted the attention of visitors to National Geographic’s website, who voted her #2 in a list of “great explorers” on the Expedition Granted campaign.

Remember that this is early-stage research, with no missions outside of Earth yet assigned. But this is a small step — or roll, in this case — to better understanding how volcanoes work generally, whether on our own planet or other locations.

Source: Jet Propulsion Laboratory

Were Lunar Volcanoes Active When Dinosaurs Roamed the Earth?

The feature called Maskelyne is one of many newly discovered young volcanic deposits on the moon. Called irregular mare patches, these areas are thought to be remnants of small lava eruptions that occurred recently in the moon's past. To view this image correctly, the large, dark, circular feature right of center is pancake-like dome that rises ABOVE the surrounding lighter-toned terrain. Lower domes, many pitted with small craters, are seen from left to right across the photo. Credit: NASA/GSFC/Arizona State University

The Moon’s a very dusty museum where the exhibits haven’t changed much over the last 4 billion years. Or so we thought. NASA’s Lunar Reconnaissance Orbiter (LRO) has provided researchers strong evidence the Moon’s volcanic activity slowed gradually instead of stopping abruptly a billion years ago.

Some volcanic deposits are estimated to be 100 million years old, meaning the moon was spouting lava when dinosaurs of the Cretaceous era were busy swatting giant dragonflies. There are even hints of 50-million-year-old volcanism, practically yesterday by lunar standards.

Ina Caldera sits atop a low, broad volcanic dome or shield volcano, where lavas once oozed from the moon’s crust. The darker patches in the photo are blobs of older lunar crust. As in the photo of Maskelyne, they form a series of low mounds higher than the younger, jumbled terrain around them. Credit: NASA
Ina Caldera sits atop a low, broad volcanic dome or shield volcano, where lavas once oozed from the moon’s crust. The darker patches in the photo are blobs of older lunar crust. As in the photo of Maskelyne, they form a series of low mounds higher than the younger, jumbled terrain around them. Credit: NASA

The deposits are scattered across the Moon’s dark volcanic plains (lunar “seas”) and are characterized by a mixture of smooth, rounded, shallow mounds next to patches of rough, blocky terrain. Because of this combination of textures, the researchers refer to these unusual areas as “irregular mare patches.”

Measuring less than one-third mile (1/2 km) across, almost all are too small to see from Earth with the exception of Ina Caldera, a 2-mile-long D-shaped patch where blobs of older, crater-pitted lunar crust (darker blobs) rise some 250 feet above the younger, rubbly surface like melted cheese on pizza.

Lavas on the moon were thin and runny like this flow photographed in Kilauea, Hawaii. Credit: USGS
Lavas on the moon were thin and runny like this flow photographed in Kilauea, Hawaii. Credit: USGS

Ina was thought to be a one-of-a-kind until researchers from Arizona State University in Tempe and Westfälische Wilhelms-Universität Münster in Germany spotted 70 more patches in close-up photos taken by the LRO. The large number and the fact that the patches are scattered all over the nearside of the Moon means that volcanic activity was not only recent but widespread.

Astronomers estimate ages for features on the moon by counting crater numbers and sizes (the fewer seen, the younger the surface) and the steepness of the slopes running from the tops of the smoother domes to the rough terrain below (the steeper, the younger).

“Based on a technique that links such crater measurements to the ages of Apollo and Luna samples, three of the irregular mare patches are thought to be less than 100 million years old, and perhaps less than 50 million years old in the case of Ina,” according to the NASA press release.

Artist concept illustration of the internal structure of the moon. Credit: NOAJ
Artist concept illustration of the internal structure of the moon. Credit: NOAJ

The young mare patches stand in stark contrast to the ancient volcanic terrain surrounding them that dates from 3.5 to 1 billion years ago.

For lava to flow you need a hot mantle, the deep layer of rock beneath the crust that extends to the Moon’s metal core. And a hot mantle means a core that’s still cranking out a lot of heat.

Scientists thought the Moon had cooled off a billion or more years ago, making recent flows all but impossible. Apparently the moon’s interior remained piping hot far longer than anyone had supposed.

“The existence and age of the irregular mare patches tell us that the lunar mantle had to remain hot enough to provide magma for the small-volume eruptions that created these unusual young features,” said Sarah Braden, a recent Arizona State University graduate and the lead author of the study.

It takes two to tango. The moon’s gravity raises a pair of watery bulges in the Earth’s oceans creating the tides, while Earth's gravity stretches and compresses the moon to warm its interior. Illustration: Bob King
It takes two to tango. The moon’s gravity raises a pair of watery bulges in the Earth’s oceans creating the tides, while Earth’s gravity stretches and compresses the moon to warm its interior. Illustration: Bob King

One way to keep the Moon warm is through tidal interaction with the Earth. A recent study points out that strains caused by Earth’s gravitational tug on the Moon (nearside vs. farside) heats up its interior. Could this be the source of the relatively recent lava flows?

So the pendulum swings. Prior to 1950 it was thought that lunar craters and landforms were all produced by volcanic activity. But the size and global distribution of craters – and the volcanoes required to produce them – would be impossible on a small body like the Moon. In the 1950s and beyond, astronomers came to realize through the study of nuclear bomb tests and high-velocity impact experiments that explosive impacts from asteroids large and small were responsible for the Moon’s craters.

This latest revelation gives us a more nuanced view of how volcanism may continue to play a role in the formation of lunar features.

Could Martian Volcanoes Help With Search For Water On The Red Planet?

Mars volcanoes Ceraunius Tholus and Uranius Tholus, as seen by Mars Express. Credits: ESA/DLR/FU Berlin (G. Neukum). Click for larger version.

Could a Martian volcanic explosion show off the path to water? One research team thinks so. They analyzed volcanic rock samples on Earth and Mars and came up with a way of predicting which ones touched water during their formation.

The Mars results are so far negative: no water using this method was found at the Curiosity rover’s landing site at Gale Crater and the Spirit rover’s former stomping grounds at Gusev Crater. That said, the science team believes this could supplement existing searches for water on Mars in sedimentary rock.

“I think this quantification of volcanic textures is a new facet of the water story that hasn’t yet been explored,” stated Kellie Wall, a geology undergraduate student at Washington State University who led the research.

“Most of the studies searching for water have focused on either looking for sedimentary structures—large- and small-scale—for evidence of water, or looking for rocks like limestones that actually would have formed in a water-rich environment.”

The ultimate Selfie - a self-protrait taken on anoher planet. This is the capability of the Mars Hand Lens Imager (MAHLI) camera, one of 5 instruments on the turret at the end of the 2.1 meter (7 ft), 30 kg (66 lb) Robotic Arm. On numerous occasions, Curiosity has taken self-portraits, many as mosaics. This on is on Sol (Mars day) 85, post landing, showing Curiosity with its destination - Aeolis Mons (Mt. Sharp) in the background. (Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo, "Curiosity Celebrates 90 Sols Scooping Mars and Snapping Amazing Self-Portrait with Mount Sharp")
The ultimate Selfie – a self-portrait taken on another planet. This is the capability of the Mars Hand Lens Imager (MAHLI) camera, one of 5 instruments on the turret at the end of the 2.1 meter (7 ft), 30 kg (66 lb) Robotic Arm. On numerous occasions, Curiosity has taken self-portraits, many as mosaics. This on is on Sol (Mars day) 85, post landing, showing Curiosity with its destination – Aeolis Mons (Mt. Sharp) in the background. (Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo, “Curiosity Celebrates 90 Sols Scooping Mars and Snapping Amazing Self-Portrait with Mount Sharp”)

There is abundant evidence that water flowed on Mars in the distant past, implying the planet had a thicker atmosphere that allowed liquid water to flow and pool abundantly on the surface. NASA’s rovers and several orbiting vehicles have seen evidence of rocks that formed in water (such as this rock Curiosity recently spotted) as well as features such as chasms that were likely cut by running water, long ago.

But volcanic rock remains a less explored frontier on Mars, the team argues. It’s known that water on Earth can speed up the cooling process of volcanic rock, creating glass. Without water, cooling slows and more crystals are formed. The team then compared observations from two sites on Mars with x-ray diffraction observations they performed on samples they had from New Zealand and Italy’s Mount Etna.

They found that Earth rocks that included water in their formation had crystallinity ranging from 8% to 35%, while those without water had crystals composing 45% of the material and up. And the Mars samples? You guessed it, they had fewer crystals, implying the volcanoes erupted with no water interaction.

A paper based on the research was published in Nature Communications.

Source: Washington State University

Timelapse: Indonesian Volcanoes at Day and Night by Thierry Legault

The Milky Way over a volcano in Indonesia. Credit and copyright: Thierry Legault.

Here’s a beautiful new timelapse from the extremely talented astrophotographer Thierry Legault. He recently traveled to Java Island in Indonesia to the Bromo-Tengger-Semeru National Park and shot imagery and footage of two active volcanoes, both during the day and at night. The views are absolutely stunning.

“At night, the activity of the sky, nature (volcanoes, clouds and fog) and humans (cars and hikers) is very intense!” Legault said via email.

Below are a couple of still photos from the video:

Fog surrounds the volcanoes of Tengger-Bromo-Semeru Park in Java, Indonesia. Credit and copyright: Thierry Legault.
Fog surrounds the volcanoes of Tengger-Bromo-Semeru Park in Java, Indonesia. Credit and copyright: Thierry Legault.

Thanks to Thierry Legault for sharing his videos and images with Universe Today!

New Image Captures one of the Brightest Volcanoes Ever Seen in the Solar System

Image of Io taken in the near-infrared with adaptive optics at the Gemini North telescope on August 29. In addition to the extremely bright eruption on the upper right limb of the satellite, the lava lake Loki is visible in the middle of Io’s disk, as well as the fading eruption that was detected earlier in the month by de Pater on the southern (bottom) limb. Io is about one arcsecond across. Image credit: Katherine de Kleer/UC Berkeley/Gemini Observatory/AURA

Jupiter’s innermost moon, Io — with over 400 active volcanoes, extensive lava flows and floodplains of liquid rock — is by far the most geologically active body in the Solar System. But last August, Io truly came alive with volcanism.

Three massive volcanic eruptions led astronomers to speculate that these presumed rare outbursts were much more common than previously thought. Now, an image from the Gemini Observatory captures what is one of the brightest volcanoes ever seen in our Solar System.

“We typically expect one huge outburst every one or two years, and they’re usually not this bright,” said lead author Imke de Pater from the University of California, Berkeley, in a press release. In fact, only 13 large eruptions were observed between 1978 and 2006. “Here we had three extremely bright outbursts, which suggest that if we looked more frequently we might see many more of them on Io.”

De Pater discovered the first two eruptions on August 15, 2013, from the W. M. Keck Observatory in Hawaii. The brightest was calculated to have produced a 50 square-mile, 30-feet thick lava flow, while the other produced flows covering 120 square miles. Both were nearly gone when imaged days later.

The third and even brighter eruption was discovered on August 29, 2013, at the Gemini observatory by UC Berkeley graduate student Katherine de Kleer. It was the first of a series of observations monitoring Io.

Images of Io taken in the near-infrared with adaptive optics at the Gemini North telescope tracking the evolution of the eruption as it decreased in intensity over 12 days. Due to Io’s rapid rotation, a different area of the surface is viewed on each night; the outburst is visible with diminishing brightness on August 29 & 30 and September 1, 3, & 10. Image credit: Katherine de Kleer/UC Berkeley/Gemini Observatory/AURA
Images of Io tracking the evolution of the eruption as it decreased in intensity over 12 days. Due to Io’s rapid rotation, a different area of the surface is viewed on each night; the outburst is visible with diminishing brightness on August 29 & 30 and September 1, 3, & 10. Image credit: Katherine de Kleer / UC Berkeley / Gemini Observatory / AURA

De Kleer and colleagues were able to track the heat of the third outburst for almost two weeks after its discovery. The team timed observations from Gemini and NASA’s nearby Infrared Telescope Facility to coincide with observations by the Japanese HISAKI spacecraft.

This allowed the observations to “represent the best day-by-day coverage of such an eruption,” said de Kleer. The team was able to conclude that the energy emitted from the late-August eruption was about 20 Terawatts, and expelled many cubic kilometers of lava.

“At the time we observed the event, an area of newly-exposed lava on the order of tens of square kilometers was visible,” said de Kleer. “We believe that it erupted in fountains from long fissures on Io’s surface, which were over ten-thousand-times more powerful than the lava fountains during the 2010 eruption of Eyjafjallajokull, Iceland, for example.”

The team hopes that monitoring Io’s surface annually will reveal the style of volcanic eruptions on the moon, the composition of the magma, and the spatial distribution of the heat flows. The eruptions may also shed light on an early Earth, when heat from the decay of radioactive elements — as opposed to the tidal forces influencing Io — created exotic, high-temperature lavas.

“We are using Io as a volcanic laboratory, where we can look back into the past of the terrestrial planets to get a better understanding of how these large eruptions took place, and how fast and how long they lasted,” said coauthor Ashley Davies.

The latest results have been published in the journal Icarus.