It has been almost forty years since the Voyager 1 and 2 missions visited the Saturn system. As the probes flew by the gas giant, they were able to capture some stunning, high-resolution images of the planet’s atmosphere, its many moons, and its iconic ring system. In addition, the probes also revealed that Saturn was slowly losing its rings, at a rate that would see them gone in about 100 million years.
More recently, the Cassini orbiter visited the Saturn system and spent over 12 years studying the planet, its moons and its ring system. And according to new research based on Cassini’s data, it appears that Saturn is losing its rings at the maximum rate predicted by the Voyager missions. According to the study, Saturn’s rings are being gobbled up by the gas giant at a rate that means they could be gone in less 100 million years.
On August 25th, 2012, the Voyager 1 spacecraft accomplished something no human-made object ever had before. After exploring the Uranus, Neptune, and the outer reaches of the Solar System, the spacecraft entered interstellar space. In so doing, it effectively became the most distant object from Earth and traveled further than anyone, or anything, in history.
Well, buckle up, because according to NASA mission scientists, the Voyager 2 spacecraft recently crossed the outer edge of the heliopause – the boundary between our Solar System and the interstellar medium – and has joined Voyager 1 in interstellar space. But unlike its sibling, the Voyager 2 spacecraft carries a working instrument that will provide the first-ever observations of the boundary that exists between the Solar System and interstellar space.
Forty years ago, the Voyager 1 and 2 missions began their journey from Earth to become the farthest-reaching missions in history. In the course of their missions, the two probes spent the next two decades sailing past the gas giants of Jupiter and Saturn. And while Voyager 1 then ventured into the outer Solar System, Voyager 2 swung by Uranus and Neptune, becoming the first and only probe in history to explore these worlds.
This summer, the probes will be marking the fortieth anniversary of their launch – on September 5th and August 20th, respectively. Despite having traveled for so long and reaching such considerable distances from Earth, the probes are still in contact with NASA and sending back valuable data. So in addition to being the most distant missions from Earth, they are the longest-running mission in history.
In addition to their distance and longevity, the Voyager spacecraft have also set numerous other records for robotic space missions. For example, in 2012, the Voyager 1 probe became the first and only spacecraft to have entered interstellar space. Voyage 2, meanwhile, is the only probe that has explored all four of the Solar System’s gas/ice giants – Jupiter, Saturn, Uranus and Neptune.
Their discoveries also include the first active volcanoes beyond Earth – on Jupiter’s moon Io – the first evidence of a possible subsurface ocean on Europa, the dense atmosphere around Titan (the only body beyond Earth with a dense, nitrogen-rich atmosphere), the craggy surface of Uranus’ “Frankenstein Moon” Miranda, and the ice plume geysers of Neptune’s largest moon, Triton.
These accomplishments have had immeasurable benefits for planetary science, astronomy and space exploration. They’ve also paved the way for future missions, such as the Galileo and Juno probes, the Cassini-Huygens mission, and the New Horizons spacecraft. As Thomas Zurbuchen, the associate administrator for NASA’s Science Mission Directorate (SMD), said in a recent press statement:
“I believe that few missions can ever match the achievements of the Voyager spacecraft during their four decades of exploration. They have educated us to the unknown wonders of the universe and truly inspired humanity to continue to explore our solar system and beyond.”
But what is perhaps most memorable about the Voyager missions is the special cargo they carry. Each spacecraft carries what is known as the Golden Record, a collection of sounds, pictures and messages that tell of Earth, human history and culture. These records were intended to serve as a sort of time capsule and/or message to any civilizations that retrieved them, should they ever be recovered.
As noted, both ships are still in contact with NASA and sending back mission data. The Voyager 1 probe, as of the writing of this article, is about 20.9 billion km (13 billion mi; 140 AU) from Earth. As it travels northward out of the plane of the planets and into interstellar space, the probe continues to send back information about cosmic rays – which are about four times as abundant in interstellar space than around Earth.
From this, researchers have learned that the heliosphere – the region that contains the Solar System’s planets and solar wind – acts as a sort of radiation shield. Much in the say that Earth’s magnetic field protects us from solar wind (which would otherwise strip away our atmosphere), the heliopause protects the Solar planets from atomic nuclei that travel at close to the speed of light.
Voyager 2, meanwhile, is currently about 17.7 billion km (11 billion mi; 114.3 AU) from Earth. It is traveling south out of the plane of the planets, and is expected to enter interstellar space in a few years. And much like Voyager 1, it is also studying how the heliosphere interacts with the surroundings interstellar medium, using a suite of instruments that measure charged particles, magnetic fields, radio waves and solar wind plasma.
Once Voyager 2 crosses into interstellar space, both probes will be able to sample the medium from two different locations simultaneously. This is expected to tell us much about the magnetic environment that encapsulates our system, and will perhaps teach us more about the history and formation of the Solar System. On top of that, it will let us know what kinds of hazards a possible interstellar mission will have to contend with.
The fact that the two probes are still active after all this time is nothing short of amazing. As Edward Stone – the David Morrisroe Professor of Physics at Caltech, the former VP and Director of NASA’s Jet Propulsion Laboratory, and the Voyager project scientist – said:
“None of us knew, when we launched 40 years ago, that anything would still be working, and continuing on this pioneering journey. The most exciting thing they find in the next five years is likely to be something that we didn’t know was out there to be discovered.”
Keeping the probes going has also been a challenge since the amount of power they generate decreases at a rate of about four watts per year. This has required that engineers learn how to operate the twin spacecraft with ever-decreasing amounts of power, which has forced them to consult documents that are decades old in order to understand the probes’ software and command functions.
Luckily, it has also given former NASA engineers who worked on the Voyager probes the opportunity to offer their experience and expertise. At present, the team that is operating the spacecraft estimate that the probes will run out of power by 2030. However, they will continue to drift along their trajectories long after they do so, traveling at a speed of 48,280 km per hour (30,000 mph) and covering a single AU every 126 days.
At this rate, they will be within spitting distance of the nearest star in about 40,000 years, and will have completed an orbit of the Milky Way within 225 million years. So its entirely possible that someday, the Golden Records will find their way to a species capable of understanding what they represent. Then again, they might find their way back to Earth someday, informing our distant, distant relatives about life in the 20th century.
And if the craft avoid any catastrophic collisions and can survive in the interstellar medium of space, it is likely that they will continue to be emissaries for humanity long after humanity is dead. It’s good to leave something behind!
The twin Voyager spacecraft are now making their way through the interstellar medium. Even though they are going where none have gone before, the path ahead it is not completely unknown.
Astronomers are using the Hubble Space Telescope to observe the ‘road’ ahead for these pioneering spacecraft, to ascertain what various materials may lay along the Voyagers’ paths through space.
Combining Hubble data with the information the Voyagers are able to gather and send back to Earth, astronomers said a preliminary analysis reveals “a rich, complex interstellar ecology, containing multiple clouds of hydrogen laced with other elements.”
“This is a great opportunity to compare data from in situ measurements of the space environment by the Voyager spacecraft and telescopic measurements by Hubble,” said Seth Redfield of Wesleyan University, who led the study. “The Voyagers are sampling tiny regions as they plow through space at roughly 38,000 miles per hour. But we have no idea if these small areas are typical or rare. The Hubble observations give us a broader view because the telescope is looking along a longer and wider path. So Hubble gives context to what each Voyager is passing through.”
The combined data is also providing new insights into how our Sun travels through interstellar space, and astronomers hope that these combined observations will help them characterize the physical properties of the local interstellar medium.
“Ideally, synthesizing these insights with in situ measurements from Voyager would provide an unprecedented overview of the local interstellar environment,” said Hubble team member Julia Zachary of Wesleyan University.
The initial look at the clouds’ composition shows very small variations in the abundances of the chemical elements contained in the structures.
“These variations could mean the clouds formed in different ways, or from different areas, and then came together,” Redfield said.
Astronomers are also seeing that the region that we and our solar system are passing through right now contains “clumpier” material, which may affect the heliosphere, the large bubble that is produced by our Sun’s powerful solar wind. At its boundary, called the heliopause, the solar wind pushes outward against the interstellar medium. Hubble and Voyager 1 made measurements of the interstellar environment beyond this boundary, where the wind comes from stars other than our sun.
“I’m really intrigued by the interaction between stars and the interstellar environment,” Redfield said. “These kinds of interactions are happening around most stars, and it is a dynamic process.”
Both Voyagers 1 and 2 launched in 1977 and both explored Jupiter and Saturn. Voyager 2 went on to visit Uranus and Neptune.
Voyager 1 is now 13 billion miles (20 billion km) from Earth, and entered interstellar space in 2012, the region between the stars that is filled with gas, dust, and material recycled from dying stars. It is the farthest a human-made spacecraft has even traveled. Next big ‘landmark’ for Voyager 2 is in about 40,000 years when it will come within 1.6 light-years of the star Gliese 445, in the constellation Camelopardalis.
Voyager 2, is 10.5 billion miles (16.9 billion km) from Earth, and will pass 1.7 light-years from the star Ross 248 in about 40,000 years.
Of course, neither spacecraft will be operational by then.
But scientists hope that for at least the next 10 years, the Voyagers will be making measurements of interstellar material, magnetic fields, and cosmic rays along their trajectories. The complimentary Hubble observations will help to map interstellar structure along the routes. Each sight line stretches several light-years to nearby stars. Sampling the light from those stars, Hubble’s Space Telescope Imaging Spectrograph measured how interstellar material absorbed some of the starlight, leaving telltale spectral fingerprints.
When the Voyagers run out of power and are no longer able to communicate with Earth, astronomers still hope to use observations from Hubble and subsequent space telescopes to characterize the environment where our robotic emissaries to the cosmos will travel.
Setting foot on a distant planet… we’ve all dreamed about it at one time or another. And it has been a staple of science fiction for almost a century. Engage the warp dive, spool up the FLT, open a wormhole, or jump into the cryochamber. Next stop, Alpha Centauri (or some other star)! But when it comes to turning science fiction into science fact, there are certain unfortunate realities we have to contend with. For starters, none of the technology for faster-than-light travel exists!
Second, sending crewed mission to even the nearest planets is a very expensive and time consuming endeavor. But thanks to ongoing developments in the fields of miniaturization, electronics and direct-energy, it might be possible to send tiny spacecraft to distant stars in a single lifetime, which could carry something of humanity along with them. Such is the hope of Professor Philip Lubin and Travis Bradshears, the founders of “Voices of Humanity“.
For people familiar with directed-energy concepts, the name Philip Lubin should definitely ring a bell. A professor from the University of California, Santa Barbara (UCSB), he is also the mind behind the NASA-funded Directed Energy Propulsion for Interstellar Exploraiton (DEEP-IN) project, and the Directed Energy Interstellar Study. These projects seek to use laser arrays and large sails to achieve relativistic flight for the sake of making interstellar missions a reality.
Looking beyond propulsion and into the realm of public participation in space exploration, Prof. Lubin and Bradshears (an engineering and physics student from the University of California, Berkeley) came together to launch Voices of Humanity (VoH) in 2015. Inspired by their work with NASA, this Kickstarter campaign aims to create the world’s first “Space Time Capsule”.
Intrinsic to this is the creation of a Humanity Chip, a custom semiconductor memory device that can be attached to the small, wafer-scale spacecraft that are part of DEEP-IN and other directed-energy concepts. This chip will contain volumes of data, including tweets, media files, and even the digital DNA records of all those who want to take part in the mission. As Professor Lubin told Universe Today in a phone interview:
“We wanted to put on board some part of humanity. We couldn’t shrink ray people down, so Travis and I brainstormed and thought that the next best thing would be to allow people to become digital astronauts. We wanted to pave the way for interstellar missions where we could send the essence of humanity to the stars – “Emissaries of the Earth”, if you will. We wanted to pave the way for that.”
This digital archive would be similar to the Golden Record that was placed on the Voyager probes, but would be much more sophisticated. Taking advantage of all the advances made in computing, electronics and data storage in recent decades, it would contain many millions of times the data, but comprise a tiny fraction of the volume.
In fact, as Lupin explained, the state of technology today allows us to create a digital archive that would be about the same size a fingernail, and which would require no more than a single gram of mass to be allocated on a silicon wafer-ship. And while such a device is not the same as sending astronauts on interstellar voyages to explore other planets, it does allow humanity to send something of itself.
“We now have the technology to put a message from everyone on Earth onto a small piece of a tiny spacecraft,” said Lupin. “We want to begin today, and not just for the future, by putting information onto anything that is launched from Earth. We are the point technologically, at this moment, that we could put a small portion of humanity on this spacecraft.”
In essence, human beings would be able to create the interstellar equivalent of a “Baby on Board” sticker, except for humanity instead. This sticker would be no larger than a postage stamp, and could be mounted on every craft to leave Earth in the near future. In essence, all missions departing from Earth could have “Humanity on Board”.
The plan is to launch their first chip – Humanity Chip 1.0 – into Low Earth Orbit (LEO) in 2017. This will be followed by the creation of Humanity Chip 2.0, which take advantage of the developments that will have occurred by next year. Eventually, they hope that Humanity Chips will be a part of missions that increase in distance from Earth, eventually culminating in a mission to interstellar space.
While there are no deep-space missions ready to go just yet, several concepts are on the table for interplanetary missions that will rely on wafer-scale spacecraft (like NASA’s DEEP-IN concept). If their Kickstarter campaign succeeds in raising the $30,000 necessary to create a Humanity Chip, Prof. Lubin and Bradshears also hope to create a “Black Hole Chip”, where participants will be able to record their “less than happy” thoughts as part of the data, which will then be sent off into space forever.
They also have a stretch goal in mind, known as the “Beam Me Up” objective. In the event that their campaign is able to raise $100,000, they will use the funds to create a ground-based laser array that will beam a package of encoded data towards a target destination in space.
As of the penning of this article, Prof. Lubin and Bradshears have raised a total of $5,656 towards their goal of $30,000. The campaign kicked off earlier this month and will remain open for another 22 days. So if you’re interested in contributing to Humanity Chip 1.0, or becoming an “Emissary of the Earth”, there’s still plenty of time.
In addition to his work with NASA, Prof. Lubin is also responsible for the UCSB’s Directed Energy System for Targeting of Asteroids and ExploRation (DE-STAR) project, a proposed system that would use directed energy (i.e. big lasers!) to deflect asteroids, comets, and other near-Earth objects (NEOs) that could pose a risk to planet Earth.
And, in a recent article titled “The Search for Directed Intelligence“- which appeared in the March 2016 issue of REACH – Reviews in Human Space Exploration – Lupin indicated that advances in directed-energy applications might also help in the search for extra-terrestrial intelligence. Essentially, by looking for for sources of directed energy systems, he claims, we might be able to find our way to other civilizations.
It is an exciting age, where advances in telecommunications and electronics are allowing us to overcome the vast distances involved in space travel. In the future, astronauts may rely on robotic explorers and fast-as-light communications to explore distant worlds (a process known as telexploration). And with a digital archive on board, we will be able to send personal greetings to any life that may already exist there.
For those who would say “sharing personal information with extra-terrestrials is a bad idea”, I would remind them that they (probably) don’t have access to Twitter or our financial records. All the same, it might be wise not to include your Social Security (or Social Insurance) number in the recordings, or any other personal data you wouldn’t share with strangers!
And who knows? Someday, we may start colonizing other planets by sending our DNA there direct. The truth is always stranger than fiction, after all!
And be sure to check out this video produced by Voices for Humanity:
Between the orbits of Mars and Jupiter lies the Solar System’s Main Asteroid Belt. Consisting of millions of objects that range in size from hundreds of kilometers in diameter (like Ceres and Vesta) to one kilometer or more, the Asteroid Belt has long been a source of fascination for astronomers. Initially, they wondered why the many objects that make it up did not come together to form a planet. But more recently, human beings have been eyeing the Asteroid Belt for other purposes.
Whereas most of our efforts are focused on research – in the hopes of shedding additional light on the history of the Solar System – others are looking to tap for its considerable wealth. With enough resources to last us indefinitely, there are many who want to begin mining it as soon as possible. Because of this, knowing exactly how long it would take for spaceships to get there and back is becoming a priority.
Distance from Earth:
The distance between the Asteroid Belt and Earth varies considerably depending on where we measure to. Based on its average distance from the Sun, the distance between Earth and the edge of the Belt that is closest to it can be said to be between 1.2 to 2.2 AUs, or 179.5 and 329 million km (111.5 and 204.43 million mi).
However, at any given time, part of the Asteroid Belt will be on the opposite side of the Sun, relative to Earth. From this vantage point, the distance between Earth and the Asteroid Blt ranges from 3.2 and 4.2 AU – 478.7 to 628.3 million km (297.45 to 390.4 million mi). To put that in perspective, the distance between Earth and the Asteroid Belt ranges between being slightly more than the distance between the Earth and the Sun (1 AU), to being the same as the distance between Earth and Jupiter (4.2 AU) when they are at their closest.
But of course, for reasons of fuel economy and time, asteroid miners and exploration missions are not about to take the long way! As such, we can safely assume that the distance between Earth and the Asteroid Belt when they are at their closest is the only measurement worth considering.
Past Missions:
The Asteroid Belt is so thinly populated that several unmanned spacecraft have been able to move through it on their way to the outer Solar System. In more recent years, missions to study larger Asteroid Belt objects have also used this to their advantage, navigating between the smaller objects to rendezvous with bodies like Ceres and Vesta. In fact, due to the low density of materials within the Belt, the odds of a probe running into an asteroid are now estimated at less than one in a billion.
The first spacecraft to make a journey through the asteroid belt was the Pioneer 10 spacecraft, which entered the region on July 16th, 1972 (a journey of 135 days). As part of its mission to Jupiter, the craft successfully navigated through the Belt and conducted a flyby of Jupiter (in December of 1973) before becoming the first spacecraft to achieve escape velocity from the Solar System.
For the most part, these missions were part of missions to the outer Solar System, where opportunities to photograph and study asteroids were brief. Only the Dawn, NEAR and JAXA’s Hayabusamissions have studied asteroids for a protracted period in orbit and at the surface. Dawn explored Vesta from July 2011 to September 2012, and is currently orbiting Ceres (and sending back gravity data on the dwarf planet’s gravity) and is expected to remain there until 2017.
Fastest Mission to Date:
The fastest mission humanity has ever mounted was the New Horizons mission, which was launched from Earth on Jan. 19th, 2006. The mission began with a speedy launch aboard an Atlas V rocket, which accelerated it to a a speed of about 16.26 km per second (58,536 km/h; 36,373 mph). At this speed, the probe reached the Asteroid Belt by the following summer, and made a close approach to the tiny asteroid 132524 APL by June 13th, 2006 (145 days after launching).
However, even this pales in comparison to Voyager 1, which was launched on Sept. 5th, 1977 and reached the Asteroid Belt on Dec. 10th, 1977 – a total of 96 days. And then there was the Voyager 2 probe, which launched 15 days after Voyager 1 (on Sept. 20th), but still managed to arrive on the same date – which works out to a total travel time of 81 days.
Not bad as travel times go. At these speed, a spacecraft could make the trip to the Asteroid Belt, spend several weeks conducting research (or extracting ore), and then make it home in just over six months time. However, one has to take into account that in all these cases, the mission teams did not decelerate the probes to make a rendezvous with any asteroids.
Ergo, a mission to the Asteroid Belt would take longer as the craft would have to slow down to achieve orbital velocity. And they would also need some powerful engines of their own in order to make the trip home. This would drastically alter the size and weight of the spacecraft, which would inevitably mean it would be bigger, slower and a heck of a lot more expensive than anything we’ve sent so far.
Another possibility would be to use ionic propulsion (which is much more fuel efficient) and pick up a gravity assist by conducting a flyby of Mars – which is precisely what the Dawn mission did. However, even with a boost from Mars’ gravity, the Dawn mission still took over three years to reach the asteroid Vesta – launching on Sept. 27th, 2007, and arriving on July 16th, 2011, (a total of 3 years, 9 months, and 19 days). Not exactly good turnaround!
Proposed Future Methods:
A number of possibilities exist that could drastically reduce both travel time and fuel consumption to the Asteroid Belt, many of which are currently being considered for a number of different mission proposals. One possibility is to use spacecraft equipped with nuclear engines, a concept which NASA has been exploring for decades.
In a Nuclear Thermal Propulsion (NTP) rocket, uranium or deuterium reactions are used to heat liquid hydrogen inside a reactor, turning it into ionized hydrogen gas (plasma), which is then channeled through a rocket nozzle to generate thrust. A Nuclear Electric Propulsion (NEP) rocket involves the same basic reactor converting its heat and energy into electrical energy, which would then power an electrical engine.
In both cases, the rocket would rely on nuclear fission or fusion to generates propulsion rather than chemical propellants, which has been the mainstay of NASA and all other space agencies to date. According to NASA estimates, the most sophisticated NTP concept would have a maximum specific impulse of 5000 seconds (50 kN·s/kg).
Using this engine, NASA scientists estimate that it would take a spaceship only 90 days to get to Mars when the planet was at “opposition” – i.e. as close as 55,000,000 km from Earth. Adjusted for a distance of 1.2 AUs, that means that a ship equipped with a NTP/NEC propulsion system could make the trip in about 293 days (about nine months and three weeks). A little slow, but not bad considering the technology exists.
Another proposed method of interstellar travel comes in the form of the Radio Frequency (RF) Resonant Cavity Thruster, also known as the EM Drive. Originally proposed in 2001 by Roger K. Shawyer, a UK scientist who started Satellite Propulsion Research Ltd (SPR) to bring it to fruition, this drive is built around the idea that electromagnetic microwave cavities can allow for the direct conversion of electrical energy to thrust.
According to calculations based on the NASA prototype (which yielded a power estimate of 0.4 N/kilowatt), a spacecraft equipped with the EM drive could make the trip to Mars in just ten days. Adjusted for a trip to the Asteroid Belt, so a spacecraft equipped with an EM drive would take an estimated 32.5 days to reach the Asteroid Belt.
Impressive, yes? But of course, that is based on a concept that has yet to be proven. So let’s turn to yet another radical proposal, which is to use ships equipped with an antimatter engine. Created in particle accelerators, antimatter is the most dense fuel you could possibly use. When atoms of matter meet atoms of antimatter, they annihilate each other, releasing an incredible amount of energy in the process.
According to the NASA Institute for Advanced Concepts (NIAC), which is researching the technology, it would take just 10 milligrams of antimatter to propel a human mission to Mars in 45 days. Based on this estimate, a craft equipped with an antimatter engine and roughly twice as much fuel could make the trip to the Asteroid Belt in roughly 147 days. But of course, the sheer cost of creating antimatter – combined with the fact that an engine based on these principles is still theoretical at this point – makes it a distant prospect.
Basically, getting to the Asteroid Belt takes quite a bit of time, at least when it comes to the concepts we currently have available. Using theoretical propulsion concepts, we are able to cut down on the travel time, but it will take some time (and lots of money) before those concepts are a reality. However, compared to many other proposed missions – such as to Europa and Enceladus – the travel time is shorter, and the dividends quite clear.
As already stated, there are enough resources – in the form of minerals and volatiles – in the Asteroid Belt to last us indefinitely. And, should we someday find a way to cost-effective way to send spacecraft there rapidly, we could tap that wealth and begin to usher in an age of post-scarcity! But as with so many other proposals and mission concepts, it looks like we’ll have to wait for the time being.
Much has been learned about Saturn’s system of moons in recent decades, thanks to the Voyager missions and the more recent surveys conducted by the Cassini spaceprobe. Between its estimated 150 moons and moonlets (only 53 of which have been identified and named) there is no shortage of scientific curiosities, and enough mysteries to keep astronomers here on Earth busy for decades.
Consider Mimas, which is often referred to as Saturn’s “Death Star Moon” on a count of its unusual appearance. Much like Saturn’s moons Tethys and Rhea, Mimas’ peculiar characteristics represents something of a mystery. Not only is it almost entirely composed ice, it’s coloration and surface features reveal a great deal about the history of the Saturnian (aka. Cronian) system. On top of that, it may even house an interior, liquid-water ocean.
Discovery and Naming:
Saturn’s moon Mimas was discovered by William Herschel in 1789, more than 100 years after Saturn’s larger moons were discovered by Christian Huygens and Giovanni Cassini. As with all the seven then-known satellites of Saturn, Mimas’ name was suggested by William Herschel’s son John in his 1847 publication Results of Astronomical Observations made at the Cape of Good Hope.
Mimas takes its name from one of the Titans of Greek mythology, who were the sons and daughters of Cronus (the Greek equivalent to Jupiter). Mimas was an offspring of Gaia, born from the blood of the castrated Uranus, who eventually died during the struggle with the Olympian Gods for control of the universe.
Size, Mass and Orbit:
With a mean radius of 198.2 ± 0.4 km and a mass of about 3.75 ×1019 kg, Mimas is equivalent in size to 0.0311 Earths and 0.0000063 times as massive. Orbiting Saturn at an average distance (semi-major axis) of 185,539 km, it is the innermost of Saturn’s larger moons, and the 8th moon orbiting Saturn. It’s orbit also has a minor eccentricity of 0.0196, ranging from 181,902 km at periapsis and 189,176 km at apoapsis.
With an estimated orbital velocity of 14.28 km/s, Mimas takes 0.942 days to complete a single orbit of Saturn. Like many of Saturn’s moons. Mimas rotation period is synchronous to its orbital period, which means it keeps one face constantly pointing towards the planet. Mimas is also in a 2:1 mean-motion resonance with the larger moon Tethys, and in a 2:3 resonance with the outer F Ring shepherd moonlet, Pandora.
Composition and Surface Features:
Mimas’ mean density of 1.1479 ± 0.007 g/cm³ is just slightly higher than that of water (1 g/cm³), which means that Mimas is mostly composed of water ice, with just a small amount of silicate rock. In this respect, Mimas is much like Tethys, Rhea, and Dione – moon’s of Saturn that are primarily composed of water ice.
Due to the tidal forces acting on it, Mimas is noticeably prolate – i.e. its longest axis is about 10% longer than the shortest, giving it its egg-shaped appearance. In fact, with a diameter of 396 km (246 mi), Mimas is just barely large and massive enough to achieve hydrostatic equilibrium (i.e. to become rounded in shape under the force of its own gravitation). Mimas is the smallest known astronomical body to have achieved this.
Three types of geological features are officially recognized on Mimas: craters, chasmata (chasms) and catenae (crater chains). Of these, craters are the most common, and it is believed that many of them have existed since the beginning of the Solar System. Mimas surface is saturated with craters, with every part of the surface showing visible depressions, and newer impacts overwriting older ones.
Mimas’ most distinctive feature is the giant impact crater Herschel, named in honor of William Herschel (the discoverer of Uranus, its moons Oberon, and Titania, and the Cronian moons Enceladus and Mimas). This large crater gives Mimas the appearance of the “Death Star” from Star Wars. At 130 km (81 mi) in diameter, Herschel’s is almost a third of Mimas’ own diameter.
Its walls are approximately 5 km (3.1 mi) high, parts of its floor measure 10 km (6.2 mi) deep, and its central peak rises 6 km (3.7 mi) above the crater floor. If there were a crater of an equivalent scale on Earth, it would be over 4,000 km (2,500 mi) in diameter, which would make it wider than the continent of Australia.
The impact that made this crater must have nearly shattered Mimas, and is believed to have created the fractures on the opposite side of the moon by sending shock waves through Mimas’s body. In this respect, Mimas’ surface closely resembles that of Tethys, with its massive Odysseus crater on its western hemisphere and the concentric Ithaca chasma, which is believed to have formed as a result of the impact that created Odysseus.
Mimas’ surface is also saturated with smaller impact craters, but no others are anywhere near the size of Herschel. The cratering is also not uniform, with most of the surface being covered with craters larger than 40 km (25 mi) in diameter. However, in the south polar region, there are generally no craters larger than 20 km (12 mi) in diameter.
Data obtained in 2014 from the Cassini spacecraft has also led to speculation about a possible interior ocean. Due to the planet’s libration (oscillation in its orbit), scientists believe that the planet’s interior is not uniform, which could be the result of a rocky interior or an interior ocean at the core-mantle boundary. This ocean would likely be maintained thanks to tidal flexing caused by Mimas’ orbital resonances with Tethys and Pandora.
A number of features in Saturn’s rings are also related to resonances with Mimas. Mimas is responsible for clearing the material from the Cassini Division, which is the gap between Saturn’s two widest rings – the A Ring and B Ring. The repeated pulls by Mimas on the Cassini Division particles, always in the same direction, forces them into new orbits outside the gap.
Particles in the Huygens Gap at the inner edge of the Cassini division are in a 2:1 resonance with Mimas. In other words, they orbit Saturn twice for each orbit competed by Mimas. The boundary between the C and B ring is meanwhile in a 3:1 resonance with Mimas; and recently, the G Ring was found to be in a 7:6 co-rotation eccentricity resonance with Mimas.
Exploration:
The first mission to study Mimas up close was Pioneer 11, which flew by Saturn in 1979 and made its closest approach on Sept. 1st, 1979, at a distance of 104,263 km. The Voyager 1 and 2 missions both flew by Mimas in 1980 and 1981, respectively, and snapped pictures of Saturn’s atmosphere, its rings, its system of moons. Images taken by Voyager 1 probe were the first ever of the Herschel crater.
Mimas has been imaged several times by the Cassini orbiter, which entered into orbit around Saturn in 2004. A close flyby occurred on February 13, 2010, when Cassini passed Mimas at a distance of 9,500 km (5,900 mi). In addition to providing multiple images of Mimas’ cratered surface, it also took measurements of Mimas’ orbit, which led to speculation about a possible interior ocean.
The Saturn system is truly a wonder. So many moons, so many mysteries, and so many chances to learn about the formation of the Solar System and how it came to be. One can only hope that future missions are able to probe some of the deeper ones, like what might be lurking beneath Mimas’ icy, imposing “Death Star” surface!
We’ve written many great articles about Mimas and Saturn’s moons here at Universe Today. Here’s one about the Herschel Crater, one about the first detailed look Cassini made, and one about it’s “Death Star” appearance.
Another great resource about Mimas is Solar Views, and you can get even more info from the Nine Planets.
The Cronian system (i.e. Saturn and its system of rings and moons) is breathtaking to behold and intriguing to study. Besides its vast and beautiful ring system, it also has the second-most satellites of any planet in the Solar System. In fact, Saturn has an estimated 150 moons and moonlets – and only 53 of them have been officially named – which makes it second only to Jupiter.
For the most part, these moons are small, icy bodies that are believed to house interior oceans. And in all cases, particularly Rhea, their interesting appearances and compositions make them a prime target for scientific research. In addition to being able to tell us much about the Cronian system and its formation, moons like Rhea can also tell us much about the history of our Solar System.
Discovery and Naming:
Rhea was discovered by Italian astronomer Giovanni Domenico Cassini on December 23rd, 1672. Together with the moons of Iapetus, Tethys and Dione, which he discovered between 1671 and 1672, he named them all Sidera Lodoicea (“the stars of Louis”) in honor of his patron, King Louis XIV of France. However, these names were not widely recognized outside of France.
In 1847, John Herschel (the son of famed astronomer William Herschel, who discovered Uranus, Enceladus and Mimas) suggested the name Rhea – which first appeared in his treatise Results of Astronomical Observations made at the Cape of Good Hope. Like all the other Cronian satellites, Rhea was named after a Titan from Greek mythology, the “mother of the gods” and one the sisters of Cronos (Saturn, in Roman mythology).
Size, Mass and Orbit:
With a mean radius of 763.8±1.0 km and a mass of 2.3065 ×1021 kg, Rhea is equivalent in size to 0.1199 Earths (and 0.44 Moons), and about 0.00039 times as massive (or 0.03139 Moons). It orbits Saturn at an average distance (semi-major axis) of 527,108 km, which places it outside the orbits of Dione and Tethys, and has a nearly circular orbit with a very minor eccentricity (0.001).
With an orbital velocity of about 30,541 km/h, Rhea takes approximately 4.518 days to complete a single orbit of its parent planet. Like many of Saturn’s moons, its rotational period is synchronous with its orbit, meaning that the same face is always pointed towards it.
Composition and Surface Features:
With a mean density of about 1.236 g/cm³, Rhea is estimated to be composed of 75% water ice (with a density of roughly 0.93 g/cm³) and 25% of silicate rock (with a density of around 3.25 g/cm³). This low density means that although Rhea is the ninth-largest moon in the Solar System, it is also the tenth-most massive.
In terms of its interior, Rhea was originally suspected of being differentiated between a rocky core and an icy mantle. However, more recent measurements would seem to indicate that Rhea is either only partly differentiated, or has a homogeneous interior – likely consisting of both silicate rock and ice together (similar to Jupiter’s moon Callisto).
Models of Rhea’s interior also suggest that it may have an internal liquid-water ocean, similar to Enceladus and Titan. This liquid-water ocean, should it exist, would likely be located at the core-mantle boundary, and would be sustained by the heating caused by from decay of radioactive elements in its core.
Rhea’s surface features resemble those of Dione, with dissimilar appearances existing between their leading and trailing hemispheres – which suggests that the two moons have similar compositions and histories. Images taken of the surface have led astronomers to divide it into two regions – the heavily cratered and bright terrain, where craters are larger than 40 km (25 miles) in diameter; and the polar and equatorial regions where craters are noticeably smaller.
Another difference between Rhea’s leading and trailing hemisphere is their coloration. The leading hemisphere is heavily cratered and uniformly bright while the trailing hemisphere has networks of bright swaths on a dark background and few visible craters. It had been thought that these bright areas (aka. wispy terrain) might be material ejected from ice volcanoes early in Rhea’s history when its interior was still liquid.
However, observations of Dione, which has an even darker trailing hemisphere and similar but more prominent bright streaks, has cast this into doubt. It is now believed that the wispy terrain are tectonically-formed ice cliffs (chasmata) which resulted from extensive fracturing of the moon’s surface. Rhea also has a very faint “line” of material at its equator which was thought to be deposited by material deorbiting from its rings (see below).
Rhea has two particularly large impact basins, both of which are situated on Rhea’s anti-Cronian side (aka. the side facing away from Saturn). These are known as Tirawa and Mamaldi basins, which measure roughly 360 and 500 km (223.69 and 310.68 mi) across. The more northerly and less degraded basin of Tirawa overlaps Mamaldi – which lies to its southwest – and is roughly comparable to the Odysseus crater on Tethys (which gives it its “Death-Star” appearance).
Atmosphere:
Rhea has a tenuous atmosphere (exosphere) which consists of oxygen and carbon dioxide, which exists in a 5:2 ratio. The surface density of the exosphere is from 105 to 106 molecules per cubic centimeter, depending on local temperature. Surface temperatures on Rhea average 99 K (-174 °C/-281.2 °F) in direct sunlight, and between 73 K (-200 °C/-328 °F) and 53 K (-220 °C/-364 °F) when sunlight is absent.
The oxygen in the atmosphere is created by the interaction of surface water ice and ions supplied from Saturn’s magnetosphere (aka. radiolysis). These ions cause the water ice to break down into oxygen gas (O²) and elemental hydrogen (H), the former of which is retained while the latter escapes into space. The source of the carbon dioxide is less clear, and could be either the result of organics in the surface ice being oxidized, or from outgassing from the moon’s interior.
Rhea may also have a tenuous ring system, which was inferred based on observed changes in the flow of electrons trapped by Saturn’s magnetic field. The existence of a ring system was temporarily bolstered by the discovered presence of a set of small ultraviolet-bright spots distributed along Rhea’s equator (which were interpreted as the impact points of deorbiting ring material).
However, more recent observations made by the Cassini probe have cast doubt on this. After taking images of the planet from multiple angles, no evidence of ring material was found, suggesting that there must be another cause for the observed electron flow and UV bright spots on Rhea’s equator. If such a ring system were to exist, it would be the first instance where a ring system was found orbiting a moon.
Exploration:
The first images of Rhea were obtained by the Voyager 1 and 2 spacecraft while they studied the Cronian system, in 1980 and 1981, respectively. No subsequent missions were made until the arrival of the Cassini orbiter in 2005. After it’s arrival in the Cronian system, the orbiter made five close targeted fly-bys and took many images of Saturn from long to moderate distances.
The Cronian system is definitely a fascinating place, and we’ve really only begun to scratch its surface in recent years. In time, more orbiters and perhaps landers will be traveling to the system, seeking to learn more about Saturn’s moons and what exists beneath their icy surfaces. One can only hope that any such mission includes a closer look at Rhea, and the other “Death Star Moon”, Dione.
Exploring the Solar System is like peeling an onion. With every layer removed, one finds fresh mysteries to ponder over, each one more confounding than the last. And this is certainly the case when it comes to Jupiter’s system of moons, particularly its four largest – Io, Europa, Ganymede and Callisto. Known as the Galilean Moons, in honor of their founder, these moons possess enough natural wonders to keep scientists busy for centuries.
As Jupiter’s innermost moon, it is also the fourth-largest moon in the Solar System, has the highest density of any known moon, and is the driest known object in the Solar System. It is also one of only four known bodies that experiences active volcanism and – with over 400 active volcanoes – it is the most geologically active body in the Solar System.
With 67 confirmed satellites, Jupiter has the largest system of moons in the Solar System. The greatest of these are the four major moons of Io, Europa, Ganymede and Callisto – otherwise known as the Galilean Moons. Named in honor of their founder, these moons are not only comparable in size to some planets (such as Mercury), they are also some of the few places outside of Earth where liquid water exists, and perhaps even life.
But it is Callisto, the fourth and farthest moon of Jupiter, that may be the most rewarding when it comes to scientific research. In addition to the possibility of a subsurface ocean, this moon is the only Galilean far enough outside of Jupiter’s powerful magnetosphere that it does not experience harmful levels of radiation. This, and the prospect of finding life, make Callisto a prime candidate for future exploration.
Discovery and Naming:
Along with Io, Europa and Ganymede, Callisto was discovered in January of 1610 by Galileo Galilei using a telescope of his own design. Like all the Galilean Moons, it takes its name from one of Zeus’ lovers in classic Greek mythology. Callisto was a nymph (or the daughter of Lycaon) who was associated with the goddess of the hunt, Artemis.
The name was suggested by German astronomer Simon Marius, apparently at the behest of Johannes Kepler. However, Galileo initially refused to use them, and the moons named in his honor were designed as Jupiter I through IV, based on their proximity to their parent planet. Being the farthest planet from Jupiter, Callisto was known as Jupiter IV until the 20th century, by which time, the names suggested by Marius were adopted.
Size, Mass and Orbit:
With a mean radius of 2410.3 ± 1.5 km (0.378 Earths) and a mass of 1.0759 × 1023 kg (0.018 Earths), Callisto is the second largest Jupiter’s moons (after Ganymede) and the third largest satellite in the solar system. Much like Ganymede, it is comparable in size to Mercury – being 99% as large – but due to its mixed composition, it has less than one-third of Mercury mass.
Callisto orbits Jupiter at an average distance (semi-major axis) of 1,882,700 km. It has a very minor eccentricity (0.0074) and ranges in distance from 1,869,000 km at periapsis to 1,897,000 km at apoapsis. This distance, which is far greater than Ganymede’s, means that Callisto does not take part in the mean-motion resonance that Io, Europa and Ganymede do.
Much like the other Galileans, Callisto’s rotation is synchronous with its orbit. This means that it takes the same amount of time (16.689 days) for Callisto to complete a single orbit of Jupiter and a single rotation on its axis. Its orbit is very slightly eccentric and inclined to the Jovian equator, with the eccentricity and inclination changing over the course of centuries due to solar and planetary gravitational perturbations.
Unlike the other Galileans, Callisto’s distant orbit means that it has never experienced much in the way of tidal-heating, which has had a profound impact on its internal structure and evolution. Its distance from Jupiter also means that the charged particles from Jupiter’s magnetosphere have had a very minor influence on its surface.
Composition and Surface Features:
The average density of Callisto, at 1.83 g/cm3, suggests a composition of approximately equal parts of rocky material and water ice, with some additional volatile ices such as ammonia. Ice is believed to constitute 49-55% of the moon, with the rock component likely made up of chondrites, silicates and iron oxide.
Callisto’s surface composition is thought to be similar to its composition as a whole, with water ice constituting 25-50% of its overall mass. High-resolution, near-infrared and UV spectra imaging have revealed the presence of various non-ice materials, such as magnesium and iron-bearing hydrated silicates, carbon dioxide, sulfur dioxide, and possibly ammonia and various organic compounds.
Beneath the surface is an icy lithosphere that is between 80-150 m thick. A salty ocean 50–200 km deep is believed to exist beneath this, thanks to the presence of radioactive elements and the possible existence of ammonia. Evidence of this ocean include Jupiter’s magnetic field, which shows no signs of penetrating Callisto’s surface. This suggests a layer of highly conductive fluid that is at least 10 km in depth. However, if this water contains ammonia, which is more likely, than it could be up to 250-300 km.
Beneath this hypothetical ocean, Callisto’s interior appears to be composed of compressed rocks and ices, with the amount of rock increasing with depth. This means, in effect, that Callisto is only partially differentiated, with a small silicate core no larger than 600 km (and a density of 3.1-3.6 g/cm³) surrounded by a mix of ice and rock.
Spectral data has also indicated that Callisto’s surface is extremely heterogeneous at the small scale. Basically, the surface consists of small, bright patches of pure water ice, intermixed with patches of a rock–ice mixture, and extended dark areas made of a non-ice material.
Compared to the other Galilean Moons, Callisto’s surface is quite dark, with a surface albedo of about 20%. Another difference is the nature of its asymmetric appearance. Whereas with the other Galileans, the leading hemisphere is lighter than the trailing one, with Callisto the opposite is true.
An immediately obvious feature about Callisto’s surface is the ancient and heavily cratered nature of it. In fact, the surface is the most cratered in the Solar System and is almost entirely saturated by craters, with newer ones having formed over older ones. What’s more, impact craters and their associated structures are the only large features on the surface. There are no mountains, volcanoes or other endogenic tectonic features.
Callisto’s impact craters range in size from 0.1 km to over 100 km, not counting the multi-ring structures. Small craters, with diameters less than 5 km, have simple bowl or flat-floored shapes, whereas those that measure 5–40 km usually have a central peak.
Larger impact features, with diameters that range from 25–100 km have central pits instead of peaks. Those with diameters over 60 km can have central domes, which are thought to result from central tectonic uplift after an impact.
The largest impact features on Callisto’s surface are multi-ring basins, which probably originated as a result of post-impact concentric fracturing which took place over a patch of lithosphere that overlay a section of soft or liquid material (possibly a patch of the interior ocean). The largest of these are Valhalla and Asgard, whose central, bright regions measure 600 and 1600 km in diameter (respectively) with rings extending farther outwards.
The relative ages of the different surface units on Callisto can be determined from the density of impact craters on them – the older the surface, the denser the crater population. Based on theoretical considerations, the cratered plains are thought to be ~4.5 billion years old, dating back almost to the formation of the Solar System.
The ages of multi-ring structures and impact craters depend on chosen background cratering rates, and are estimated by different researchers to vary between 1 and 4 billion years of age.
Atmosphere:
Callisto has a very tenuous atmosphere composed of carbon dioxide which has an estimated surface pressure of 7.5 × 10-¹² bar (0.75 micro Pascals) and a particle density of 4 × 108 cm-3. Because such a thin atmosphere would be lost in only about 4 days, it must be constantly replenished, possibly by slow sublimation of carbon dioxide ice from Callisto’s icy crust.
While it has not been directly detected, it is believed that molecular oxygen exists in concentrations 10-100 times greater than CO². This is evidenced by the high electron density of the planet’s ionosphere, which cannot be explained by the photoionization of carbon dioxide alone. However, condensed oxygen has been detected on the surface of Callisto, trapped within its icy crust.
Habitability:
Much like Europa and Ganymede, and Saturn’s moons of Enceladus, Mimas, Dione, Titan, the possible existence of a subsurface ocean on Callisto has led many scientists to speculate about the possibility of life. This is particularly likely if the interior ocean is made up of salt-water, since halophiles (which thrive in high salt concentrations) could live there.
In addition, the possibility of extra-terrestrial microbial life has also been raised with respect to Callisto. However, the environmental conditions necessary for life to appear (which include the presence of sufficient heat due to tidal flexing) are more likely on Europa and Ganymede. The main difference is the lack of contact between the rocky material and the interior ocean, as well as the lower heat flux in Callisto’s interior.
In essence, while Callisto possesses the necessary pre-biotic chemistry to host life, it lacks the necessary energy. Because of this, the most likely candidate for the existence of extra-terrestrial life in Jupiter’s system of moons remains Europa.
Exploration:
The first exploration missions to Callisto were the Pioneer 10 and 11 spacecrafts, which conducted flybys of the Galilean moon in 1973 and 1974, respectively, But these missions provided little additional information beyond what had already learned through Earth-based observations. In contrast, the Voyager 1 and 2 spacecraft, which conducted flybys of the moon in 1979, managed to image more than half the surface and precisely measured Callisto’s temperature, mass and shape.
Further exploration took place between 1994 and 2003, when the Galileo spacecraft performed eight close flybys with Callisto. The orbiter completed the global imaging of the surface and delivered a number of pictures with a resolution as high as 15 meters. In 2000, while en route to Saturn, the Cassini spacecraft acquired high-quality infrared spectra of the Galilean satellites, including Callisto.
In February–March 2007, while en route to Pluto, the New Horizons probe obtained new images and spectra of Callisto. Using its Linear Etalon Imaging Spectral Array (LEISA) instrument, the probe was able to reveal how lighting and viewing conditions affect infrared spectrum readings of its surface water ice.
The next planned mission to the Jovian system is the European Space Agency’s Jupiter Icy Moon Explorer (JUICE), due to launch in 2022. Ostensibly geared towards exploring Europa and Ganymede, the mission profile also includes several close flybys of Callisto.
Colonization:
Compared to the other Galileans, Callisto presents numerous advantages as far as colonization is concerned. Much like the others, the moon has an abundant supply of water in the form of surface ice (but also possibly liquid water beneath the surface). But unlike the others, Callisto’s distance from Jupiter means that colonists would have far less to worry about in terms of radiation.
In 2003, NASA conducted a conceptual study called Human Outer Planets Exploration (HOPE) regarding the future human exploration of the outer Solar System. The target chosen to consider in detail was Callisto, for the purposes of investigating the possible existence of life forms embedded in the ice crust on this moon and on Europa.
The study proposed a possible surface base on Callisto where a crew could “teleoperate a Europa submarine and excavate Callisto surface samples near the impact site”. In addition, this base could extract water from Callisto’s ample supply of water ices to produce rocket propellant for further exploration of the Solar System.
The advantages of a base on Callisto include low radiation (due to its distance from Jupiter) and geological stability. Such a base could facilitate exploration on other Galilean Moons, and be an ideal location for a Jovian system way station, servicing spacecraft heading farther into the outer Solar System – which would likely take the form of craft using a gravity assist from a close flyby of Jupiter.
Reports filed by NASA’s Glenn Research Center and Langley Research Center – in December and February of 2003, respectively – both outlined possible manned missions to Callisto, as envisioned by HOPE. According to these reports, a mission that would likely involve a ship using a Mangetoplasmadynamic (MPD) or Nuclear-Electric Propulsion (NEP) drive system, and equipped to generate artificial gravity, could be mounted in the 2040s.
So while Callisto may not be the best target in the search for extra-terrestrial life, it may be the most hospitable of Jupiter’s moons for human life. In either case, any future missions to Jupiter will likely include a stopovers to Callisto, with the intent of investigating both of these possibilities.