How Long Does It Take to Get to Jupiter?

How Long Does It Take to Get to Jupiter?

We’re always talking about Pluto, or Saturn or Mars. But nobody ever seems to talk about Jupiter any more. Why is that? I mean, it’s the largest planet in the Solar System. 318 times the mass of the Earth has got to count for something, right? Right?

 Jupiter with Io and Ganymede taken by amateur astronomer Damian Peach. Credit: NASA / Damian Peach

Jupiter with Io and Ganymede taken by amateur astronomer Damian Peach. Credit: NASA / Damian Peach

Jupiter is one of the most important places in the Solar System. The planet itself is impressive; with ancient cyclonic storms larger than the Earth, or a magnetosphere so powerful it defies comprehension.

One of the most compelling reasons to visit Jupiter is because of its moons. Europa, Callisto and Ganymede might all contain vast oceans of liquid water underneath icy shells. And as you probably know, wherever we find liquid water on Earth, we find life.

And so, the icy moons of Jupiter are probably the best place to look for life in the entire Solar System.

And yet, as I record this video in early 2016, there are no spacecraft at Jupiter or its moons. In fact, there haven’t been any there for years. The last spacecraft to visit Jupiter was NASA’s New Horizons in 2007. Mars is buzzing with orbiters and rovers, we just got close up pictures of Pluto! and yet we haven’t seen Jupiter close up in almost 10 years. What’s going on?

Part of the problem is that Jupiter is really far away, and it takes a long time to get there.

How long? Let’s take a look at all the spacecraft that have ever made this journey.

The first spacecraft to ever cross the gulf from the Earth to Jupiter was NASA’s Pioneer 10. It launched on March 3, 1972 and reached on December 3, 1973. That’s a total of 640 days of flight time.

But Pioneer 10 was just flying by, on its way to explore the outer Solar System. It came within 130,000 km of the planet, took the first close up pictures ever taken of Jupiter, and then continued on into deep space for another 11 years before NASA lost contact.

Pioneer 11 took off a year later, and arrived a year later. It made the journey in 606 days, making a much closer flyby, getting within 21,000 kilometers of Jupiter, and visiting Saturn too.

Next came the Voyager spacecraft. Voyager 1 took only 546 days, arriving on March 5, 1979, and Voyager 2 took 688 days.

So, if you’re going to do a flyby, you’ll need about 550-650 days to make the journey.

But if you actually want to slow down and go into orbit around Jupiter, you’ll need to take a much slower journey. The only spacecraft to ever stick around Jupiter was NASA’s Galileo spacecraft, which launched on October 18, 1989.

Instead of taking the direct path to Jupiter, it made two gravitational assisting flybys of Earth and one of Venus to pick up speed, finally arriving at Jupiter on December 8, 1995. That’s a total of 2,242 days.

So why did Galileo take so much longer to get to Jupiter? It’s because you need to be going slow enough that when you reach Jupiter, you can actually enter orbit around the planet, and not just speed on past.

And now, after this long period of Jupiterlessness, we’re about to have another spacecraft arrive at the massive planet and go into orbit. NASA’s Juno spacecraft was launched back on August 5, 2011 and it’s been buzzing around the inner Solar System, building up the velocity to make the journey to Jupiter.

 NASA's Juno spacecraft launched on August 6, 2011 and should arrive at Jupiter on July 4, 2016. Credit: NASA / JPL

NASA’s Juno spacecraft launched on August 6, 2011 and should arrive at Jupiter on July 4, 2016. Credit: NASA / JPL

It did a flyby of Earth back in 2013, and if everything goes well, Juno will make its orbital insertion into the Jovian system on July 4, 2016. Total flight time: 1,795 days.

Once again, we’ll have a spacecraft observing Jupiter and its moon.s

This is just the beginning. There are several more missions to Jupiter in the works. The European Space Agency will be launching the Jupiter Icy Moons Mission in 2022, which will take nearly 8 years to reach Jupiter by 2030.

NASA’s Europa Multiple-Flyby Mission [Editor’s note: formerly known as the Europa Clipper] will probably launch in the same timeframe, and spend its time orbiting Europa, trying to get a better understand the environment on Europa. It probably won’t be able to detect any life down there, beneath the ice, but it’ll figure out exactly where the ocean starts.

So, how long does it take to get to Jupiter? Around 600 days if you want to just do a flyby and aren’t planning to stick around, or about 2,000 days if you want to actually get into orbit.

10 Interesting Facts About Neptune

Reconstruction of Voyager 2 images showing the Great Black spot (top left), Scooter (middle), and the Small Black Spot (lower right). Credit: NASA/JPL

Neptune is a truly fascinating world. But as it is, there is much that people don’t know about it. Perhaps it is because Neptune is the most distant planet from our Sun, or because so few exploratory missions have ventured that far out into our Solar System. But regardless of the reason, Neptune is a gas (and ice) giant that is full of wonder!

Below, we have compiled a list of 10 interesting facts about this planet. Some of them, you might already know. But others are sure to surprise and maybe even astound you. Enjoy!

Continue reading “10 Interesting Facts About Neptune”

Uranus’ “Sprightly” Moon Ariel

Mosaic of the four highest-resolution images of Ariel taken by the Voyager 2 space probe during its 1986 flyby of Uranus. Credit: NASA/JPL

The outer Solar System has enough mysteries and potential discoveries to keep scientists busy for decades. Case in point, Uranus and it’s system of moons. Since the beginning of the Space Age, only one space probe has ever passed by this planet and its system of moons. And yet, that which has been gleaned from this one mission, and over a century and a half of Earth- (and space-) based observation, has been enough to pique the interest of many generations of scientists.

For instance, just about all detailed knowledge of Uranus’ 27 known moons – including the “sprightly” moon Ariel – has been derived from information obtained by the Voyager 2 probe. Nevertheless, this single flyby revealed that Ariel is composed of equal parts ice and rock, a cratered and geologically active surface, and a seasonal cycle that is both extreme and very unusual (at least by our standards!)

Discovery and Naming:

Ariel was discovered on October 24th, 1851, by English astronomer William Lassel, who also discovered the larger moon of Umbriel on the same day. While William Herschel, who discovered Uranus’ two largest moons of Oberon and Titania in 1787, claimed to have observed four other moons in Uranus’ orbit, those claims have since been concluded to be erroneous.

A montage of Uranus's moons. Image credit: NASA
A montage of Uranus’s major moons. Image credit: NASA

As with all of Uranus’ moons, Ariel was named after a character from Alexander Pope’s The Rape of the Lock and Shakespeare’s The Tempest. In this case, Ariel refers to a spirit of the air who initiates the great storm in The Tempest and a sylph who protects the female protagonist in The Rape of the Lock. The names of all four then-known satellites of Uranus were suggested by John Herschel in 1852 at the request of Lassell.

Size, Mass and Orbit:

With a mean radius of 578.9 ± 0.6 km and a mass of 1.353 ± 0.120 × 1021 kg, Ariel is equivalent in size to 0.0908 Earths and 0.000226 times as massive. Ariel’s orbit of Uranus is almost circular, with an average distance (semi-major axis) of 191,020 km – making it the second closest of Uranus’ five major moons (behind Miranda). It has a very small orbital eccentricity (0.0012) and is inclined very little relative to Uranus’ equator (0.260°).

With an average orbital velocity of 5.51 km/s, Ariel takes 2.52 days to complete a single orbit of Uranus. Like most moons in the outer Solar System, Ariel’s rotation is synchronous with its orbit. This means that the moon is tidally locked with Uranus, with one face constantly pointed towards the planet.

Ariel orbits and rotates within Uranus’ equatorial plane, which means it rotates perpendicular to the Sun. This means that its northern and southern hemispheres face either directly towards the Sun or away from it at the solstices, which results in an extreme seasonal cycle of permanent day or night for a period of 42 years.

Size comparison between Earth, the Moon, and Ariel. Credit: NASA/JPL/USGS/Tom Reding
Size comparison between Earth, the Moon, and Ariel. Credit: NASA/JPL/USGS/Tom Reding

Ariel’s orbit lies completely inside the Uranian magnetosphere, which means that its trailing hemisphere is regularly struck by magnetospheric plasma co-rotating with the planet. This bombardment is believed to be the cause of the darkening of the trailing hemispheres (see below), which has been observed for all Uranian moons (with the exception of Oberon).

Currently Ariel is not involved in any orbital resonance with other Uranian satellites. In the past, however, it may have been in a 5:3 resonance with Miranda, which could have been partially responsible for the heating of that moon, and 4:1 resonance with Titania, from which it later escaped.

Composition and Surface Features:

Ariel is the fourth largest of Uranus’ moons, but is believed to be the third most-massive. Its average density of 1.66 g/cm3 indicates that it is roughly composed of equal parts water ice and rock/carbonaceous material, including heavy organic compounds. Based on spectrographic analysis of the surface, the leading hemisphere of Ariel has been revealed to be richer in water ice than its trailing hemisphere.

The cause of this is currently unknown, but it may be related to bombardment by charged particles from Uranus’s magnetosphere, which is stronger on the trailing hemisphere. The interaction of energetic particles and water ice causes sublimation and the decomposition of methane trapped in the ice (as clathrate hydrate), darkening the methanogenic and other organic molecules and leaving behind a dark, carbon-rich residue (aka. tholins).

The highest-resolution Voyager 2 color image of Ariel. Canyons with floors covered by smooth plains are visible at lower right. The bright crater Laica is at lower left. Credit: NASA/JPL
The highest-resolution Voyager 2 color image of Ariel, showing canyons with floors covered by smooth plains (lower right) and the bright Laica crater (lower left). Credit: NASA/JPL

Based on its size, estimates of its ice/rock distribution, and the possibility of salt or ammonia in its interior, Ariel’s interior is thought to be differentiated between a rocky core and an icy mantle. If true, the radius of the core would account for 64% of the moon’s radius (372 km) and 52% of its mass. And while the presence of water ice and ammonia could mean Ariel harbors an interior ocean at it’s core-mantle boundary, the existence of such an ocean is considered unlikely.

Infrared spectroscopy has also identified concentrations of carbon dioxide (CO²) on Ariel’s surface, particularly on its trailing hemisphere. In fact, Ariel shows the highest concentrations of CO² on of any Uranian satellite, and was the first moon to have this compound discovered on its surface.

Though the precise reason for this is unknown, it is possible that it is produced from carbonates or organic material that have been exposed to Uranus’ magnetosphere or solar ultraviolet radiation – due to the asymmetry between the leading and trailing hemispheres. Another explanation is outgassing, where primordial CO² trapped in Ariel’s interior ice escaped thanks to past geological activity.

The observed surface of Ariel can be divided into three terrain types: cratered terrain, ridged terrain and plains. Other features include chasmata (canyons), fault scarps (cliffs), dorsa (ridges) and graben (troughs or trenches). Impact craters are the most common feature on Ariel, particularly in the south pole, which is the moon’s oldest and most geographically extensive region.

False-color map of Ariel. The prominent noncircular crater below and left of center is Yangoor. Part of it was erased during formation of ridged terrain via extensional tectonics. Credit: NASA/JPL/USGS
False-color map of Ariel, showing the prominent Yangoor crater (left of center) and patches of ridged terrain (far left). Credit: USGS

Compared to the other moons of Uranus, Ariel appears to be fairly evenly-cratered. The surface density of the craters, which is significantly lower than those of Oberon and Umbriel, suggest that they do not date to the early history of the Solar System. This means that Ariel must have been completely resurfaced at some point in its history, most likely in the past when the planet had a more eccentric orbit and was therefore more geologically active.

The largest crater observed on Ariel, Yangoor, is only 78 km across, and shows signs of subsequent deformation. All large craters on Ariel have flat floors and central peaks, and few are surrounded by bright ejecta deposits. Many craters are polygonal, indicating that their appearance was influenced by the crust’s preexisting structure. In the cratered plains there are a few large (about 100 km in diameter) light patches that may be degraded impact craters.

The cratered terrain is intersected by a network of scarps, canyons and narrow ridges, most of which occur in Ariel’s mid-southern latitudes. Known as chasmata, these canyons were probably graben that formed due to extensional faulting triggered by global tension stresses – which in turn are believed to have been caused by water and/or liquid ammonia freezing in the interior.

These chasmata are typically 15–50 km wide and are mainly oriented in an east- or northeasterly direction. The widest graben have grooves running along the crests of their convex floors (known as valles). The longest canyon is Kachina Chasma, which is over 620 km long.

was taken Jan. 24, 1986, from a distance of 130,000 km (80,000 mi). The complexity of Ariel's surface indicates that a variety of geologic processes have occurred. Credit: NASA/JPL
Image of Ariel, taken on Jan. 24, 1986, from a distance of 130,000 km (80,000 mi) showing the complexity of Ariel’s surface. Credit: NASA/JPL

The ridged terrain on Ariel, which is the second most-common type, consists of bands of ridges and troughs hundreds of kilometers long. These ridges are found bordering cratered terrain and cutting it into polygons. Within each band (25-70 km wide) individual ridges and troughs have been observed that are up to 200 km long and 10-35 km apart. Here too, these features are believed to be a modified form of graben or the result of geological stresses.

The youngest type of terrain observed on Ariel are its plains, which consists of relatively low-lying smooth areas. Due to the varying levels of cratering found in these areas, the plains are believed to have formed over a long period of time. They  are found on the floors of canyons and in a few irregular depressions in the middle of the cratered terrain.

The most likely origin for the plains is through cryovolcanism, since their geometry resembles that of shield volcanoes on Earth, and their topographic margins suggests the eruption of viscous liquid – possibly liquid ammonia. The canyons must therefore have formed at a time when endogenic resurfacing was still taking place on Ariel.

Uranus and Ariel
Ariel’s transit of Uranus, which was captured by the Hubble Space Telescope on July 26th, 2008. Credit: NASA, ESA, L. Sromovsky (University of Wisconsin, Madison), H. Hammel (Space Science Institute), and K. Rages (SETI)

Ariel is the most reflective of Uranus’s moons, with a Bond albedo of about 23%. The surface of Ariel is generally neutral in color, but there appears to be an asymmetry where the trailing hemisphere is slightly redder. The cause of this, is believed to be interaction between Ariel’s trailing hemisphere and radiation from Uranus’ magnetosphere and Solar ultraviolet radiation, which converts organic compounds in the ice into tholins.

Like all of Uranus’ major moons, Ariel is thought to have formed in the Uranunian accretion disc; which existed around Uranus for some time after its formation, or resulted from a large impact suffered by Uranus early in its history.

Exploration:

Due to its proximity to Uranus’ glare, Ariel is difficult to view by amateur astronomers. However, since the 19th century, Ariel has been observed many times by ground-based on space-based instruments. For example, on July 26th, 2006, the Hubble Space Telescope captured a rare transit made by Ariel of Uranus, which cast a shadow that could be seen on the Uranian cloud tops. Another transit, in 2008, was recorded by the European Southern Observatory.

It was not until the 1980s that images were obtained by the first and only orbiter to ever pass through the Uranus’ system. This was the Voyager 2 space probe, which photographed the moon during its January 1986 flyby.  The probe’s closest approach was at a distance of 127,000 km (79,000 mi) – significantly less than the distances to all other Uranian moons except Miranda.

Voyager 2. Credit: NASA
Artist’s impression of the Voyager 2 space probe. Credit: NASA

The images acquired covered only about 40% of the surface, but only 35% was captured with the quality required for geological mapping and crater counting. This was partly due to the fact that the flyby coincided with the southern summer solstice, where the southern hemisphere was pointed towards the Sun and the northern hemisphere was completely concealed by darkness.

No missions have taken place to study Uranus’ system of moons since and none are currently planned. However, the possibility of sending the Cassini spacecraft to Uranus was evaluated during its mission extension planning phase in April of 2008. It was determined that it would take about twenty years for Cassini to get to the Uranian system after departing Saturn. However, this proposal and the ultimate fate of the mission remain undecided at this time.

All in all, Uranus’ moon Ariel is in good company. Like it’s fellow Uranians, its axial tilt is almost the exact same as Uranus’, it is composed of almost equal parts ice and rock, it is geologically active, and its orbit leads to an extreme seasonal cycle. However, Ariel stands alone when its to its brightness and its youthful surface. Unfortunately, this bright and youthful appearance has not made it an easier to observe.

Alas, as with all Uranian moons, exploration of this moon is still in its infancy and there is much we do not know about it. One can only hope another deep-space mission, like a modified Cassini flyby, takes place in the coming years and finishes the job started by Voyager 2!

We have many interesting articles on Ariel and Uranus’ moons here at Universe Today. Here’s one about Ariel’s 2006 transit of Uranus, its 2008 transit, and one which answers the all-important question How Many Moons Does Uranus Have?

For more information, check out NASA’s Solar System Exploration page on Ariel, and The Planetary Society’s Voyager 2 Ariel image catalog.

Sources:

 

What is the Oort Cloud?

The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA
The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA

For thousands of years, astronomers have watched comets travel close to Earth and light up the night sky. In time, these observations led to a number of paradoxes. For instance, where were these comets all coming from? And if their surface material vaporizes as they approach the Sun (thus forming their famous halos), they must formed farther away, where they would have existed there for most of their lifespans.

In time, these observations led to the theory that far beyond the Sun and planets, there exists a large cloud of icy material and rock where most of these comets come from. This existence of this cloud, which is known as the Oort Cloud (after its principal theoretical founder), remains unproven. But from the many short and long-period comets that are believed to have come from there, astronomers have learned a great deal about it structure and composition.

Definition:

The Oort Cloud is a theoretical spherical cloud of predominantly icy planetesimals that is believed to surround the Sun at a distance of up to around 100,000 AU (2 ly). This places it in interstellar space, beyond the Sun’s Heliosphere where it defines the cosmological boundary between the Solar System and the region of the Sun’s gravitational dominance.

Like the Kuiper Belt and the Scattered Disc, the Oort Cloud is a reservoir of trans-Neptunian objects, though it is over a thousands times more distant from our Sun as these other two. The idea of a cloud of icy infinitesimals was first proposed in 1932 by Estonian astronomer Ernst Öpik, who postulated that long-period comets originated in an orbiting cloud at the outermost edge of the Solar System.

In 1950, the concept was resurrected by Jan Oort, who independently hypothesized its existence to explain the behavior of long-term comets. Although it has not yet been proven through direct observation, the existence of the Oort Cloud is widely accepted in the scientific community.

Structure and Composition:

The Oort Cloud is thought to extend from between 2,000 and 5,000 AU (0.03 and 0.08 ly) to as far as 50,000 AU (0.79 ly) from the Sun, though some estimates place the outer edge as far as 100,000 and 200,000 AU (1.58 and 3.16 ly). The Cloud is thought to be comprised of two regions – a spherical outer Oort Cloud of 20,000 – 50,000 AU (0.32 – 0.79 ly), and disc-shaped inner Oort (or Hills) Cloud of 2,000 – 20,000 AU (0.03 – 0.32 ly).

The outer Oort cloud may have trillions of objects larger than 1 km (0.62 mi), and billions that measure 20 kilometers (12 mi) in diameter. Its total mass is not known, but – assuming that Halley’s Comet is a typical representation of outer Oort Cloud objects – it has the combined mass of roughly 3×1025 kilograms (6.6×1025 pounds), or five Earths.

Based on the analyses of past comets, the vast majority of Oort Cloud objects are composed of icy volatiles – such as water, methane, ethane, carbon monoxide, hydrogen cyanide, and ammonia. The appearance of asteroids thought to be originating from the Oort Cloud has also prompted theoretical research that suggests that the population consists of 1-2% asteroids.

Earlier estimates placed its mass up to 380 Earth masses, but improved knowledge of the size distribution of long-period comets has led to lower estimates. The mass of the inner Oort Cloud, meanwhile, has yet to be characterized. The contents of both Kuiper Belt and the Oort Cloud are known as Trans-Neptunian Objects (TNOs), because the objects of both regions have orbits that that are further from the Sun than Neptune’s orbit.

A belt of comets called the Oort Cloud is theorized to encircle the Solar system (image credit: NASA/JPL).
A belt of comets called the Oort Cloud is theorized to encircle the Solar system (image credit: NASA/JPL).

Origin:

The Oort cloud is thought to be a remnant of the original protoplanetary disc that formed around the Sun approximately 4.6 billion years ago. The most widely accepted hypothesis is that the Oort cloud’s objects initially coalesced much closer to the Sun as part of the same process that formed the planets and minor planets, but that gravitational interaction with young gas giants such as Jupiter ejected them into extremely long elliptic or parabolic orbits.

Recent research by NASA suggests that a large number of Oort cloud objects are the product of an exchange of materials between the Sun and its sibling stars as they formed and drifted apart. It is also suggested that many – possibly the majority – of Oort cloud objects were not formed in close proximity to the Sun.

Alessandro Morbidelli of the Observatoire de la Cote d’Azur has conducted simulations on the evolution of the Oort cloud from the beginnings of the Solar System to the present. These simulations indicate that gravitational interaction with nearby stars and galactic tides modified cometary orbits to make them more circular. This is offered as an explanation for why the outer Oort Cloud is nearly spherical in shape while the Hills cloud, which is bound more strongly to the Sun, has not acquired a spherical shape.

A comparison of the Solar System and its Oort Cloud. 70,000 years ago, Scholz's Star and companion passed along the outer boundaries of our Solar System (Credit: NASA, Michael Osadciw/University of Rochester)
A comparison of the Solar System and its Oort Cloud. 70,000 years ago, Scholz’s Star and companion passed along the outer boundaries of our Solar System. Credit: NASA, Michael Osadciw/University of Rochester

Recent studies have shown that the formation of the Oort cloud is broadly compatible with the hypothesis that the Solar System formed as part of an embedded cluster of 200–400 stars. These early stars likely played a role in the cloud’s formation, since the number of close stellar passages within the cluster was much higher than today, leading to far more frequent perturbations.

Comets:

Comets are thought to have two points of origin within the Solar System. They start as infinitesimals in the Oort Cloud and then become comets when passing stars knock some of them out of their orbits, sending into a long-term orbit that take them into the inner solar system and out again.

Short-period comets have orbits that last up to two hundred years while the orbits of long-period comets can last for thousands of years. Whereas short-period comets are believed to have emerged from either the Kuiper Belt or the scattered disc, the accepted hypothesis is that long-period comets originate in the Oort Cloud. However, there are some exceptions to this rule.

For example, there are two main varieties of short-period comet: Jupiter-family comets and Halley-family comets. Halley-family comets, named for their prototype (Halley’s Comet) are unusual in that although they are short in period, they are believed to have originated from the Oort cloud. Based on their orbits, it is suggested they were once long-period comets that were captured by the gravity of a gas giant and sent into the inner Solar System.

Evolution of a comet as it orbits the sun. Credit: Laboratory for Atmospheric and Space Sciences/ NASA
Evolution of a comet as it orbits the sun. Credit: Laboratory for Atmospheric and Space Sciences/ NASA

Exploration:

Because the Oort Cloud is so much farther out than the Kuiper Belt, the region remained unexplored and largely undocumented. Space probes have yet to reach the area of the Oort cloud, and Voyager 1 – the fastest and farthest of the interplanetary space probes currently exiting the Solar System – is not likely to provide any information on it.

At its current speed, Voyager 1 will reach the Oort cloud in about 300 years, and will will take about 30,000 years to pass through it. However, by around 2025, the probe’s radioisotope thermoelectric generators will no longer supply enough power to operate any of its scientific instruments. The other four probes currently escaping the Solar System – Voyager 2, Pioneer 10 and 11, and New Horizons – will also be non-functional when they reach the Oort cloud.

Exploring the Oort Cloud presents numerous difficulties, most of which arise from the fact that it is incredible distant from Earth. By the time a robotic probe could actually reach it and begin exploring the area in earnest, centuries will have passed here on Earth. Not only would those who had sent it out in the first place be long dead, but humanity will have most likely invented far more sophisticated probes or even manned craft in the meantime.

Still, studies can be (and are) conducted by examining the comets that it periodically spits out, and long-range observatories are likely to make some interesting discoveries from this region of space in the coming years. It’s a big cloud. Who knows what we might find lurking in there?

We have many interesting articles about the Oort Cloud and Solar System for Universe Today. Here’s an article about how big the Solar System is, and one on the diameter of the Solar System. And here’s all you need to know about Halley’s Comet and Beyond Pluto.

You might also want to check out this article from NASA on the Oort Cloud and one from the University of Michigan on the origin of comets.

Do not forget to take a look at the podcast from Astronomy Cast. Episode 64: Pluto and the Icy Outer Solar System and Episode 292: The Oort Cloud.

Reference:
NASA Solar System Exploration: Kuiper Belt & Oort Cloud

Neptune’s Moon Triton

Global Color Mosaic of Triton, taken by Voyager 2 in 1989. Credit: NASA/JPL/USGS

The planets of the outer Solar System are known for being strange, as are their many moons. This is especially true of Triton, Neptune’s largest moon. In addition to being the seventh-largest moon in the Solar System, it is also the only major moon that has a retrograde orbit – i.e. it revolves in the direction opposite to the planet’s rotation. This suggests that Triton did not form in orbit around Neptune, but is a cosmic visitor that passed by one day and decided to stay.

And like most moons in the outer Solar System, Triton is believed to be composed of an icy surface and a rocky core. But unlike most Solar moons, Triton is one of the few that is known to be geologically active. This results in cryovolcanism, where geysers periodically break through the crust and turn the surface Triton into what is sure to be a psychedelic experience!

Discovery and Naming:

Triton was discovered by British astronomer William Lassell on October 10th, 1846, just 17 days after the discovery of Neptune by German astronomer Johann Gottfried Galle. After learning about the discovery, John Herschel – the son of famed English astronomer William Herschel, who discovered many of Saturn’s and Uranus’ moons – wrote to Lassell and recommended he observe Neptune to see if it had any moons as well.

New Horizons image of Neptune and its largest moon, Triton. June 23, 2010. Credit: NASA
New Horizons image of Neptune and its largest moon, Triton, taken by the LORRI instrument on June 23, 2010. Credit: NASA

Lassell did so and discovered Neptune’s largest moon eight days later. Thirty-four years later, French astronomer Camille Flammarion named the moon Triton – after the Greek sea god and son of Poseidon (the equivalent of the Roman god Neptune) – in his 1880 book Astronomie Populaire. It would be several decades before the name caught on however. Until the discovery of the second moon Nereid in 1949, Triton was commonly known simply as “the satellite of Neptune”.

Size, Mass and Orbit:

At 2.14 × 1022 kg, and with a diameter of approx. 2,700 kilometers (1,680 miles) km, Triton is the largest moon in the Neptunian system – comprising more than 99.5% of all the mass known to orbit the planet. In addition to being the seventh-largest moon in the Solar System, it is also more massive than all known moons in the Solar System smaller than itself combined.

With no axial tilt and an eccentricity of virtually zero, the moon orbits Neptune at a distance of 354,760 km (220,438 miles). At this distance, Triton is the farthest satellite of Neptune, and orbits the planet every 5.87685 Earth days. Unlike other moons of its size, Triton has a retrograde orbit around its host planet.

Most of the outer irregular moons of Jupiter and Saturn have retrograde orbits, as do some of Uranus’s outer moons. However, these moons are all much more distant from their primaries, and are rather small in comparison. Triton also has a synchronous orbit with Neptune, which means it keeps one face aimed towards the planet at all times.

As Neptune orbits the Sun, Triton’s polar regions take turns facing the Sun, resulting in seasonal changes as one pole, then the other, moves into the sunlight. Such changes were observed in April of 2010 by astronomers using the European Southern Observatory’s Very Large Telescope.

Another all-important aspect of Triton’s orbit is that it is decaying. Scientists estimate that in approximately 3.6 billion years, it will pass below Neptune’s Roche limit and will be torn apart.

Composition:

Triton has a radius, density (2.061 g/cm3), temperature and chemical composition similar to thatof Pluto. Because of this, and the fact that it circles Neptune in a retrograde orbit, astronomers believe that the moon originated in the Kuiper Belt and later became trapped by Neptune’s gravity.

Another theory has it that Triton was once a dwarf planet with a companion. In this scenario, Neptune captured Triton and flung its companion away when the giant gas moved further out into the solar system, billions of years ago.

Also like Pluto, 55% of Triton’s surface is covered with frozen nitrogen, with water ice comprising 15–35% and dry ice (aka. frozen carbon dioxide) forming the remaining 10–20%. Trace amounts of methane and carbon monoxide ice are believed to exist there as well, as are small amounts of ammonia (in the form of ammonia dihydrate in the lithosphere).

Triton’s density suggests that its interior is differentiated between a solid core made of rocky material and metals, a mantle composed of ice, and a crust. There is enough rock in Triton’s interior for radioactive decay to power convection in the mantle, which may even be sufficient to maintain a subterranean ocean. As with Jupiter’s moon of Europa, the proposed existence of this warm-water ocean could mean the presence of life beneath the icy crusts.

Atmosphere and Surface Features:

Triton has a considerably high albedo, reflecting 60–95% of the sunlight that reaches it. The surface is also quite young, which is an indication of the possible existence of an interior ocean and geological activity. The moon has a reddish tint, which is probably the result of the methane ice turning to carbon due to exposure to ultraviolet radiation.

Triton is considered to be one of the coldest places in the Solar System. The moon’s surface temperature is approx. -235°C while Pluto averages about -229°C. Scientists say that Pluto may drop as low as -240°C at the furthest point from the Sun in its orbit, but it also gets much warmer closer to the Sun, giving it a higher overall temperature average.

It is also one of the few moons in the Solar System that is geologically active, which means that its surface is relatively young due to resurfacing. This activity also results in cryovolcanism, where water ammonia and nitrogen gas burst forth from the surface instead of liquid rock. These nitrogen geysers can send plumes of liquid nitrogen 8 km above the surface of the moon.

Triton (lower left) compared to the Moon (upper left) and Earth (right), to scale. Credit: NASA/JPL/USGS
Triton (lower left) compared to the Moon (upper left) and Earth (right), to scale. Credit: NASA/JPL/USGS

Because of the geological activity constantly renewing the moon’s surface, there are very few impact craters on Triton. Like Pluto, Triton has an atmosphere that is thought to have resulted from the evaporation of ices from its surface. Like its surface ices, Triton’s tenuous atmosphere is made up of nitrogen with trace amounts of carbon monoxide and small amounts of methane near the surface.

This atmosphere consists of a troposphere rising to an altitude of 8km, where it then gives way to a thermosphere that reaches out to 950 km from the surface. The temperature of Triton’s upper atmosphere, at 95-100 K (ca.-175 °C/-283 °F) is higher than that at the surface, due to the influence of solar radiation and Neptune’s magnetosphere.

A haze permeates most of Triton’s troposphere, thought to be composed largely of hydrocarbons and nitriles created by the action of sunlight on methane. Triton’s atmosphere also has clouds of condensed nitrogen that lie between 1 and 3 km from the surface.

Observations taken from Earth and by the Voyager 2 spacecraft have shown that Triton experiences a warm summer season every few hundred years. This could be the result of a periodic change in the planet’s albedo (i.e. its gets darker and redder) which could be caused by either frost patterns or geological activity.

Using the CRIRES instrument on ESO’s Very Large Telescope, a team of astronomers has been able to see that the summer is in full swing in Triton’s southern hemisphere. Credit: ESO
Using the CRIRES instrument on ESO’s Very Large Telescope, a team of astronomers has been able to see that the summer is in full swing in Triton’s southern hemisphere. Credit: ESO

This change would allow more heat to be absorbed, followed by an increase in sublimation and atmospheric pressure. Data collected between 1987 and 1999 indicated that Triton was approaching one of these warm summers.

Exploration:

When NASA’s Voyager 2 made a flyby of Neptune in August of 1989, the mission controllers also decided to conduct a flyby of Triton – similar to Voyager 1‘s encounter with Saturn and Titan. When it made its flyby, most of the northern hemisphere was in darkness and unseen by Voyager.

Because of the speed of Voyager’s visit and the slow rotation of Triton, only one hemisphere was seen clearly at close distance. The rest of the surface was either in darkness or seen as blurry markings. Nevertheless, the Voyager 2 spacecraft managed to capture several images of the moon and spotted geysers of liquid nitrogen blasting out of two distinct features on the surface.

In August of 2014, in anticipation of New Horizons impending encounter with Pluto, NASA restored these photos and used them to create the first global color map of Triton. Produced by Paul Schenk, a scientist at the Lunar and Planetary Institute in Houston, the map was also used to make a movie (shown below) that recreated the historic Voyager 2 encounter in time for the 25th anniversary of the event.

Yes, Triton is indeed an unusual moon. Aside from its rather unique characteristics (retrograde motion, geological activity) the moon’s landscape is likely to be an amazing sight. For anyone standing on the surface, surrounded by colorful ices, plumes of nitrogen and ammonia, a nitrogen haze and Neptune’s big blue disc hanging on the sky, the experience would seem like something akin to a hallucination.

In the end, it is too bad that the Solar System will one day be saying good-bye to this moon. Because of the nature of its orbit, the moon will eventually fall into Neptune’s gravity well and break up. At which point, Neptune will have a huge ring like Saturn, until those particles crash into the planet as well.

That too would be something to behold. One can only hope that humanity will still be around in 3.6 billion years to witness it!

We have many interesting articles on Triton, Neptune, and the outer planets of the Solar System here at Universe Today.

Here’s one about the New Map of Triton, and one about the Underground Ocean it might be hiding, and 40 Years of Summer on Triton. And here’s Why You Shouldn’t Buy Real Estate on Triton.

In the Observatory also has an interview with Emily Lakdawalla, the senior editor and planetary evangelist for the Planetary Society, titled “Where Should We Look for Life in the Solar System?

Sources:

New Horizons Mission to Pluto

Artist's impression of the New Horizons spacecraft in orbit around Pluto (Charon is seen in the background). Credit: NASA/JPL

Humans have been sending spacecraft to other planets, as well as asteroid and comets, for decades. But rarely have any of these ventured into the outer reaches of our Solar System. In fact, the last time a probe reached beyond the orbit of Saturn to explore the worlds of Neptune, Uranus, Pluto and beyond was with the Voyager 2 mission, which concluded back in 1989.

But with the New Horizons mission, humanity is once again peering into the outer Solar System and learning much about its planets, dwarf planets, planetoids, moons and assorted objects. And as of July 14th, 2015, it made its historic rendezvous with Pluto, a world that has continued to surprise and mystify astronomers since it was first discovered.

Background:

In 1980, after Voyager 1‘s flyby of Saturn, NASA scientists began to consider the possibility of using Saturn to slingshot the probe towards Pluto to conduct a flyby by 1986. This would not be the case, as NASA decided instead to conduct a flyby of Saturn’s moon of Titan – which they considered to be a more scientific objective – thus making a slingshot towards Pluto impossible.

Because no mission to Pluto was planned by any space agency at the time, it would be years before any missions to Pluto could be contemplated. However, after Voyager 2′s flyby of Neptune and Triton in 1989, scientists once again began contemplating a mission that would take a spacecraft to Pluto for the sake of studying the Kuiper Belt and Kuiper Belt Objects (KBOs).

Voyager 2. Credit: NASA
Artist’s impression of the Voyager spacecraft in flight. Credit: NASA/JPL

In May 1989, a group of scientists, including Alan Stern and Fran Bagenal, formed an alliance called the “Pluto Underground”. Committed to the idea of mounting an exploratory mission to Pluto and the Kuiper Belt, this group began lobbying NASA and the US government to make it this plan a reality. Combined with pressure from the scientific community at large, NASA began looking into mission concepts by 1990.

During the course of the late 1990s, a number of Trans-Neptunian Objects (TNOs) were discovered, confirming the existence of the Kuiper Belt and spurring interest in a mission to the region. This led NASA to instruct the JPL to re-purpose the mission as a Pluto and KBO flyby. However, the mission was scrapped by 2000, owing to budget constraints.

Backlash over the cancellation led NASA’s Science Mission Directorate to create the New Frontiers program which began accepting mission proposals. Stamatios “Tom” Krimigis, head of the Applied Physics Laboratory’s (APL) space division, came together with Alan Stern to form the New Horizons team. Their proposal was selected from a number of submissions, and officially selected for funding by the New Frontiers program in Nov. 2001.

Despite additional squabbles over funding with the Bush administration, renewed pressure from the scientific community allowed the New Horizons team managed to secure their funding by the summer of 2002. With a commitment of $650 million for the next fourteen years, Stern’s team was finally able to start building the spacecraft and its instruments.

Engineers working on the New Horizons spacecraft's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. Credit: NASA
Engineers working on the New Horizons spacecraft’s Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. Credit: NASA

Mission Profile:

New Horizons was planned as a voyage to the only unexplored planet in the Solar System, and was originally slated for launch in January 2006 and arrival at Pluto in 2015. Alan Stern was selected as the mission’s principal investigator, and construction of the spacecraft was handled primarily by the Southwest Research Institute (SwRI) and the Johns Hopkins Applied Physics Laboratory, with various contractor facilities involved in the navigation of the spacecraft.

Meanwhile, the US Naval Observatory (USNO) Flagstaff Station – in conjunction with NASA and JPL – was responsible for performing navigational position data and related celestial frames. Coincidentally, the UNSO Flagstaff station was where the photographic plates that led to the discovery of Pluto’s moon Charon came from.

In addition to its compliment of scientific instruments (listed below), there are several cultural artifacts traveling aboard the spacecraft. These include a collection of 434,738 names stored on a compact disc, a piece of Scaled Composites’s SpaceShipOne, and a flag of the USA, along with other mementos. In addition, about 30 g (1 oz) of Clyde Tombaugh’s ashes are aboard the spacecraft, to commemorate his discovery of Pluto in 1930.

The New Horizons spacecraft takes off on Jan. 19, 2006 from the Kennedy Space Center for its planned close encounter with Pluto. Credit: NIKON/Scott Andrews/NASA
The New Horizons spacecraft takes off on Jan. 19, 2006 from the Kennedy Space Center for its planned close encounter with Pluto. Credit: NIKON/Scott Andrews/NASA

Instrumentation:

The New Horizons science payload consists of seven instruments. They are (in alphabetically order):

  • Alice: An ultraviolet imaging spectrometer responsible for analyzing composition and structure of Pluto’s atmosphere and looks for atmospheres around Charon and Kuiper Belt Objects (KBOs).
  • LORRI: (Long Range Reconnaissance Imager) a telescopic camera that obtains encounter data at long distances, maps Pluto’s farside and provides high resolution geologic data.
  • PEPSSI: (Pluto Energetic Particle Spectrometer Science Investigation) an energetic particle spectrometer which measures the composition and density of plasma (ions) escaping from Pluto’s atmosphere.
  • Ralph: A visible and infrared imager/spectrometer that provides color, composition and thermal maps.
  • REX: (Radio Science EXperiment) a device that measures atmospheric composition and temperature; passive radiometer.
  • SDC: (Student Dust Counter) built and operated by students, this instrument measures the space dust peppering New Horizons during its voyage across the solar system.
  • SWAP: (Solar Wind Around Pluto) a solar wind and plasma spectrometer that measures atmospheric “escape rate” and observes Pluto’s interaction with solar wind.
Instruments New Horizons will use to characterize Pluto are REX (atmospheric composition and temperature; PEPSSI (composition of plasma escaping Pluto's atmosphere); SWAP (solar wind); LORRI (close up camera for mapping, geological data); Star Dust Counter (student experiment measuring space dust during the voyage); Ralph (visible and IR imager/spectrometer for surface composition and thermal maps and Alice (composition of atmosphere and search for atmosphere around Charon). Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
The instruments New Horizons will use to characterize Pluto. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Launch:

Due to a series of weather-related delays, the New Horizons mission launched on January 19th, 2006, two days later than originally scheduled. The spacecraft took off from Cape Canaveral Air Force Station, Florida, at 15:00 EST (19:00 UTC) atop an Atlas V 551 rocket. This was the first launch of this particular rocket configuration, which has a third stage added to increase the heliocentric (escape) speed.

The spacecraft left Earth faster than any spacecraft to date, achieving a launch velocity of 16.5 km/s. It took only nine hours to reach the Moon’s orbit, passing lunar orbit before midnight (EST) on the same day it was launched. It has not, however, broken Voyager 1‘s record – which is currently traveling at 17.145 km/s (61,720 km/h, 38,350 mph) relative to the Sun – for being the fastest spacecraft to leave the Solar System.

Inner Solar System:

Between January and March, 2006, mission controllers guided the probe through a series of trajectory-correction maneuvers (TCMs). During the week of February 20th, 2006, controllers conducted in-flight tests on three of the major on board science instruments. On April 7th, the spacecraft passed the orbit of Mars, moving at roughly 21 km/s (76,000 km/h; 47,000 mph) away from the Sun.

At this point in its journey, the spacecraft had reached a distance of 243 million kilometers from the Sun, and approximately 93.4 million km from Earth. On June 13th, 2006, the New Horizons spacecraft passed the tiny asteroid 132524 APL at a distance of 101,867 km (63,297 mi) when it was closest.

Using the Ralph instrument, New Horizons was able to capture images of the asteroid, estimating to be 2.5 km (1.6 mi) in diameter. The spacecraft also successfully tracked the asteroid from June 10th-12th, 2006, allowing the mission team to test the spacecraft’s ability to track rapidly moving objects.

First images of Pluto in September 2006. Credit: NASA
First images of Pluto taken by New Horizons in September 2006. Credit: NASA

From September 21st-24th, New Horizons managed to capture its first images of Pluto while testing the LORRI instruments. These images, which were taken from a distance of approximately 4,200,000,000 km (2.6×109 mi) or 28.07 AU and released on November 28th, confirmed the spacecraft’s ability to track distant targets.

Outer Solar System:

On September 4th, 2006, New Horizons took its first pictures of Jupiter at a distance of 291 million kilometers (181 million miles). The following January, it conducted more detailed surveys of the system, capturing an infrared image of the moon Callisto, and several black and white images of Jupiter itself.

By February 28th, 2007, at 23:17 EST (03:17, UTC) New Horizons made its closest approach to Europa, at a distance of 2,964,860 km (1,842,278 mi). At 01:53:40 EST (05:43:40 UTC), the spacecraft made its flyby of Jupiter, at a distance of 2.3 million km (1.4 million mi) and received a gravity assist.

The Jupiter flyby increased New Horizons‘ speed by 4 km/s (14,000 km/h; 9,000 mph), accelerating the probe to a velocity of 23 km/s (83,000 km/h; 51,000 mph) relative to the Sun and shortening its voyage to Pluto by three years.

The encounter with Jupiter not only provided NASA with the opportunity to photograph the planet using the latest equipment, it also served as a dress rehearsal for the spacecraft’s encounter with Pluto. As well as testing the imaging instruments, it also allowed the mission team to test the communications link and the spacecraft’s memory buffer.

Black and white image of Jupiter viewed by LORRI in January 2007
Black and white image of Jupiter viewed by LORRI in January 2007. Credit: NASA/John Hopkins University Applied Physics Laboratory/Southwest Research Institute

One of the main goals during the Jupiter encounter was observing its atmospheric conditions and analyzing the structure and composition of its clouds. Heat-induced lightning strikes in the polar regions and evidence of violent storm activity were both observed. In addition, the Little Red Spot,  was imaged from up close for the first time. The New Horizons spacecraft also took detailed images of Jupiter’s faint ring system. Traveling through Jupiter’s magnetosphere, the spacecraft also managed to collect valuable particle readings.

The flyby of the Jovian systems also gave scientists the opportunity to examine the structure and motion of Io’s famous lava plumes. New Horizons measured the plumes coming from the Tvashtar volcano, which reached an altitude of up to 330 km from the surface, while infrared signatures confirmed the presence of 36 more volcanoes on the moon.

Callisto’s surface was also analyzed with LEISA, revealing how lighting and viewing conditions affect infrared spectrum readings of its surface water ice. Data gathered on minor moons such as Amalthea also allowed NASA scientists to refine their orbit solutions.

After passing Jupiter, New Horizons spent most of its journey towards Pluto in hibernation mode. During this time, New Horizons crossed the orbit of Saturn (June 8, 2008) and Uranus on (March 18, 2011). In June 2014, the spacecraft emerged from hibernation and the team began conducting instrument calibrations and a course correction,. By August 24th, 2014, it crossed Neptune’s orbit on its way to Pluto.

Capturing Callisto
New Horizons Long Range Reconnaissance Imager (LORRI) captured these two images of Jupiter’s outermost large moon, Callisto, during its flyby in February 2007. Credit: NASA/JPL

Rendezvous with Pluto:

Distant-encounter operations at Pluto began on January 4th, 2015. Between January 25th to 31st, the approaching probe took several images of Pluto, which were released by NASA on February 12th. These photos, which were taken at a distance of more than 203,000,000 km (126,000,000 mi) showed Pluto and its largest moon, Charon.

Investigators compiled a series of images of the moons Nix and Hydra taken from January 27th through February 8th, 2015, beginning at a range of 201,000,000 km (125,000,000 mi), while Kerberos and Styx were captured by photos taken on April 25.

On July 4th, 2015, NASA lost contact with New Horizons after it experienced a software anomaly and went into safe mode. On the following day, NASA announced that they had determined it to be the result of a timing flaw in a command sequence. By July 6th, the glitch had been fixed and the probe had exited safe mode and began making its approach.

The New Horizons spacecraft made its closest approach to Pluto at 07:49:57 EDT (11:49:57 UTC) on July 14th, 2015, and then Charon at 08:03:50 EDT (12:03:50 UTC). Telemetries confirming a successful flyby and a healthy spacecraft reached Earth on 20:52:37 EDT (00:52:37 UTC).

During the flyby, the probe captured the clearest pictures of Pluto to date, and full analyses of the data obtained is expected to take years to process. The spacecraft is currently traveling at a speed of 14.52 km/s (9.02 mi/s) relative to the Sun and at 13.77 km/s (8.56 mi/s) relative to Pluto.

Full trajectory of New Horizons space probe (sideview). Credit: pluto.jhuapl.edu
Full trajectory of New Horizons space probe (sideview). Credit: pluto.jhuapl.edu

Future Objectives:

With its flyby of Pluto now complete, the New Horizons probe is now on its way towards the Kuiper Belt. The goal here is to study one or two other Kuiper Belt Objects, provided suitable KBOs are close to New Horizons‘ flight path.

Three objects have since been selected as potential targets, which were provisionally designated PT1 (“potential target 1”), PT2 and PT3 by the New Horizons team. These have since been re-designated as 2014 MU69 (PT1), 2014 OS393 (PT2), and 2014 PN70 (PT3).

All of these objects have an estimated diameter of 30–55 km, are too small to be seen by ground telescopes, and are 43–44 AU from the Sun, which would put the encounters in the 2018–2019 period. All are members of the “cold” (low-inclination, low-eccentricity) classical Kuiper Belt, and thus very different from Pluto.

Even though it was launched far faster than any outward probe before it, New Horizons will never overtake either Voyager 1 or Voyager 2 as the most distant human-made object from Earth. But then again, it doesn’t need to, given that what it was sent out to study all lies closer to home.

What’s more, the probe has provided astronomers with extensive and updated data on many of planets and moons in our Solar System – not the least of which are the Jovian and Plutonian systems. And last, but certainly not least, New Horizons is the first spacecraft to have it made it out to such a distance since the Voyager program.

And so we say so long and good luck to New Horizons, not to mention thanks for providing us with the best images of Pluto anyone has ever seen! We can only hope she fares well as she makes its way into the Kuiper Belt and advances our knowledge of the outer Solar System even farther.

We have many interesting articles about the New Horizons spacecraft and Pluto here on Universe Today. For example, here are some Interesting Facts About PlutoHow Long Does it Take to Get to Pluto, Why Pluto is No Longer Considered a Planet, and Is There Life on Pluto?

For more information on the Kuiper Belt, check out What is The Kuiper Belt? and NASA’s Solar System Exploration entry on the Kuiper Belt and Oort Cloud.

Astronomy Cast also has some fascinating episodes on Pluto, including On Pluto’s Doorstep – Live Hangout with New Horizons Team

And be sure to check out the New Horizons mission homepage at NASA.

Uranus’s Moon Oberon

Oberon, as imaged by the Voyager 2 probe during its flyby on Jan. 24, 1986. Credit: NASA

In 1610, Galileo’s observed four satellites orbiting the distant gas giant of Jupiter. This discovery would ignite a revolution in astronomy, and encouraged further examinations of the outer Solar System to see what other mysteries it held. In the centuries that followed, astronomers not only discovered that other gas giants had similar systems of moons, but that these systems were rather extensive.

For example, Uranus has a system of 27 confirmed satellites. Of these, Oberon is the outermost satellite, as well as the second largest and second most-massive. Named in honor of a mythical king of fairies, it is also the ninth most massive moon in the Solar System.

Discovery and Naming:

Discovered in 1787 by Sir William Herschel, Oberon was one of two major satellites discovered in a single day (the other being Uranus’ moon of Titania). At the time, he reported observing four other moons; however, the Royal Astronomical Society would later determine that these were spurious. It would be almost five decades after the moons were discovered that an astronomer other than Herschel observed them.

Initially, Oberon was referred to as “the second satellite of Uranus”, and in 1848, was given the designation Uranus II by William Lassell. In 1851, Lassell discovered Uranus’ other two moons – later named Ariel and Miranda – and began numbering them based on their distance from the planet . Oberon was thus given the designation of Uranus IV.

Size comparison between the Earth, the Moon, and Saturn's moon of Oberon. Credit: Tom.Reding/Public Domain
Size comparison between the Earth, the Moon, and Uranus’ moon of Oberon. Credit: Tom.Reding/Public Domain

By 1852, Herschel’s son John suggested naming the moon’s his father observed Oberon and Titania, at the request of Lassell himself. All of these names were taken from the works of William Shakespeare and Alexander Pope, with the name Oberon being derived from the King of the Fairies in A Midsummer Night’s Dream.

Size, Mass and Orbit:

With a diameter of approx. 1,523 kilometers, a surface area of 7,285,000 km², and a mass of 3.014 ± 0.075 x 10²¹ kilograms, Oberon is the second largest, and second most massive of Uranus’ moons. It is also the ninth most massive moon in the solar system.

At a distance of 584,000 km from Uranus, it is the farthest of the five major moons from Uranus. However, this distance is subject to change, as Oberon has a small orbital eccentricity and inclination relative to Uranus’ equator. It has an orbital period of about 13.5 days, coincident with its rotational period. This means that Oberon is a tidally-locked, synchronous satellite with one face always pointing toward the planet.

Since (like all of Uranus’ moons) Oberon orbits the planet around its equatorial plane, and Uranus orbits the Sun almost on its side, the moon experiences a rather extreme seasonal cycle. Essentially, both the northern and southern poles spend a period of 42 years in complete darkness or complete sunlight – with the sun rising close to the zenith over one of the poles at each solstice.

Voyager 2:

So far, the only close-up images of Oberon have been provided by the Voyager 2 probe, which photographed the moon during its flyby of Uranus in January 1986.  The images cover about 40% of the surface, but only 25% of the surface was imaged with a resolution that allows geological mapping.

In addition, the time of the flyby coincided with the southern hemisphere’s summer solstice, when nearly the entire northern hemisphere was in darkness. This prevented the northern hemisphere from being studied in any detail. No other spacecraft has visited the Uranian system before or since, and no missions to the planet are currently being planned.

Composition:

Oberon’s density is higher than the typical density of Uranus’ satellites, at 1.63 g/cm³. This would indicate that the moon consists of roughly equal proportions of water ice and a dense non-ice component. The latter could be made of rock and carbonaceous material including heavy organic compounds.

Spectroscopic observations have confirmed the presence of crystalline water ice in the surface of the moon. It is believed that Oberon, much like the other Uranian moons, consists of an icy mantle surrounding a rocky core. If this is true, then the radius of the core (480 km) would be equal to approx. 63% of the radius of the moon, and its mass would be around 54% of the moon’s mass.

A computer-projected false-color image of Oberon. The white region has not yet been photographed by a spacecraft. The large crater with the dark floor (right of center) is Hamlet; the crater Othello is to its lower left, and the 'canyon' Mommur Chasma is at upper left. Credit: USGS Astrogeology Research Program
False-color image of Oberon, showing the Hamlet and Othello craters (right of center and lower left) and the Mommur Chasma (upper left). Credit: USGS Astrogeology Research Program

Currently, the full composition of the icy mantle is unknown. However, it it were to contain enough ammonia or other antifreeze compounds, the moon may possess a liquid ocean layer at the core–mantle boundary. The thickness of this ocean, if it exists, would be up to 40 km and its temperature would be around 180 K.

It is unlikely that at these temperatures, such an ocean could support life. But assuming that hydrothermal vents exist in the interior, it is possible life could exist in small patches near the core. However, the internal structure of Oberon depends heavily on its thermal history, which is poorly known at present.

Interesting Facts:

Oberon is the second-darkest large moon of Uranus (after Umbriel), with a surface that appears to be generally red in color – except where fresh impact deposits have left neutral or slightly blue colors. In fact, Oberon is the reddest moon amongst its peers, with a trailing hemisphere that is significantly redder than its leading hemisphere.

The reddening of the surfaces is often a result of space weathering caused by bombardment of the surface by charged particles and micrometeorites over many millions of years. However, the color asymmetry of Oberon is more likely caused by accretion of a reddish material spiraling in from outer parts of the Uranian system.

Oberon’s surface is the most heavily cratered of all the Uranian moons, which would indicate that Oberon has the most ancient surface among them. Consistent with the planet’s name, these surface features are named after characters in Shakespearean plays. The largest known crater, Hamlet, measures 206 kilometers in diameter, while the Macbeth, Romeo, and Othello craters measure 203, 159, and 114 km respectively.

Uranus and its five major moons
Uranus and its five major moons. Credit: space.com

Other prominent surface features are what is known as chasmata – steep-sided depressions that are comparable to rift valleys or escarpments here on Earth. The largest known chasmata on Oberon is the Mommur Chasma, which measures 537 km in diameter and takes its name from the enchanted forest in French folklore that was ruled by Oberon.

As you can plainly see, there is much that remains unknown about this satellite. Much like its peers, how they came to be, and what secrets may lurk beneath their surfaces, is still open to speculation. One can only hope that future generations will choose to mount another Voyager-like expedition to the Outer Solar System for the sake of studying the Uranian satellites.

We have written many interesting articles on the moons of Uranus here at Universe Today. Here’s How Many Moons Does Uranus Have? and Interesting Facts About Uranus.

For more information, check out NASA’s Solar System Exploration page on Oberon and Nine Planet’s page on Oberon.

Astronomy Cast also has a good episode on the subject. Here’s Episode 62: Uranus.

Sources:

Uranus’ Moon Umbriel

Uranus and its five major moons
Uranus and its five major moons. Credit:

The 19th century was an auspicious time for astronomers and planet hunters. In addition to the discovery of the Asteroid Belt that rests between Mars and Jupiter – as well as the many minor planets within – the outer solar planet of Uranus and its series of moons were also observed for the very first time.

Of these, Umbriel was certainly one of the most interesting finds. Aside from being Uranus’ third largest moon, it is also its darkest – a trait which contributed greatly to the selection of its name. And to this day, this large satellite of Uranus is shrouded in mystery…

Discovery and Naming:

Umbriel, along with its fellow moon Ariel, was discovered by English astronomer William Lassell on October 24th, 1851. Fellow English astronomer William Herschel, who had discovered Uranus’ moons of Titania and Oberon at the end of the 18th century, also claimed to have observed four additional moons around Uranus. However, his observations were not confirmed, leaving the confirmed discoveries of Ariel and Umbriel to Lassell, roughly half a century later.

Much like all of Uranus’ 27 moons, Umbriel was named after a character from Alexander Pope’s The Rape of the Lock, as well as plays by William Shakespeare. These names were suggested by John Herschel, the son of William Herschel, when he announced the discoveries of Titania and Oberon.

Size comparison of Earth, the Moon, and Umbriel. Credit: /Public Domain
Size comparison of Earth, the Moon, and Umbriel. Credit: Tom Reding/Public Domain

In keeping with the moon’s dark appearance, the name Umbriel – which was the name of the ‘dusky melancholy sprite’ in the The Rape of the Lock and is derived from the Latin Umbra (which means “shadow”) – seemed most appropriate for this satellite.

Size, Mass and Orbit:

Ariel and Umbriel are nearly the same size, with diameters of 1,158 kilometers and 1,170 kilometers respectively. Based on spectrograph analyses and estimates of the moon’s mass and density, astronomers believe that the majority of the planet consists of water ice, with a dense non-ice component constituting around 40% of its mass.

This could mean that Umbriel consists of an icy outer shell that surrounds a rocky core, or one made out of carbonaceous materials. It also means that though Umbriel is the third largest moon of Uranus, it is only the fourth largest in terms of mass. Furthermore, its dark appearance is believed to be the result of the interactions of surface water ice with energetic particles from Uranus’ magnetosphere.

These energetic particles would cause methane deposits (trapped in the ice as clathrate hydrate) to decompose and other organic molecules to darken, leaving behind a dark, carbon-rich residue. The satellite’s dark color is also due to its very low bond albedo – which is basically the amount of electromagnetic radiation (i.e. light) that gets reflected back from the surface.

So far, spectrographic analyses have only confirmed the existence of water and carbon dioxide. So the existence of organic particles or methane deposits in the ice remains theoretical. However, their presence would explain the prevalence of CO² and why it is concentrated mainly on the trailing hemisphere.

Umbriel’s orbital period – i.e. the time it takes the moon to orbit Uranus – is approximately 4.1 days, which is coincident with its rotational period. This means that the moon is a synchronous and tidally-locked satellite, with one face always pointing towards Uranus. The satellite is at an average distance of 266,000 kilometers from its planet, which makes it the third farthest from Uranus, behind Miranda and Ariel.

Voyager 2:

So far, the only close-up images of Umbriel have been provided by the Voyager 2 probe, which photographed the moon during its flyby of Uranus in January of 1986. During this flyby, the closest distance between Voyager 2 and Umbriel was 325,000 km (202,000 mi).

The images cover about 40% of the surface, but only 20% was photographed with the quality required for geological mapping. At the time of the flyby, the southern hemisphere of Umbriel was pointed towards the Sun – so the northern, darkened hemisphere could not be studied. At present, no future missions are planned to study the moon in greater detail.

US Geological Survey map of Umbriel. Credit: ISGS
US Geological Survey map of Umbriel, showing its cratered surface and polygons. Credit: ISGS

Interesting Facts:

The surface of Umbriel has far more and larger craters than do Ariel and Titania, ranging in diameter from a few kilometers to several hundred. The largest known crater on the surface is Wokolo, which is 210 km in diameter. Wunda, a crater with a diameter of about 131 kilometers, is the most noticeable surface feature, due to the ring of bright material on its floor (which scientists think are from the impact).

Other craters include Fin, Peri, and Zlyden which, like all of Umbriel’s surface features, are named after dark sprites from different cultures’ mythology. The only satellite of Uranus to have more craters is Oberon, and the planet is believed to be geologically stable.

It is further believes that surface has probably been stable since the Late Heavy Bombardment. The only signs of ancient internal activity are canyons and dark polygons – dark patches with complex shapes measuring from tens to hundreds of kilometers across. The polygons were identified from  precise photometry of Voyager 2′s images and are distributed more or less uniformly on the surface of Umbriel, trending northeast – southwest.

Because Uranus orbits the Sun almost on its side, it is subject to an extreme seasonal cycle. Both northern and southern poles spend 42 years in complete darkness, and another 42 years in continuous sunlight, with the Sun rising close to the zenith over one of the poles at each solstice.

The southern hemisphere of Umbriel displays heavy cratering in this Voyager 2 image, taken Jan. 24, 1986, from a distance of 557,000 kilometers (346,000 miles). Credit: NASA/JPL
The southern hemisphere of Umbriel displays heavy cratering in this Voyager 2 image, taken Jan. 24, 1986. The large impact crater of Wunda is visible at the top. Credit: NASA/JPL

Because they are in the planet’s equatorial plane, Uranus’ satellites also experience these changes. This means that Umbriel’s north and south poles spend 42 years in light and then 42 years in darkness before repeating the cycle. In fact, the Voyager 2 flyby coincided with the southern hemisphere’s 1986 summer solstice, when nearly the entire northern hemisphere was in darkness.

Interesting little moon isn’t it? Even though no missions are currently planned to observe it in the coming years, one can only hope that future satellites happen to sneak a peek at it on their way to some other destination in the outer Solar System.

Universe Today has many interesting articles on the moons of Uranus, like how many moons does Uranus have?

You should also check out NASA’s page on Umbriel and Uranus’ moon Umbriel at Nine Planets.

Astronomy Cast has an episode on Uranus that you should check out.

Sources:

25 Years Since Voyager’s ‘Pale Blue Dot’ Images

These six narrow-angle color images were made from the first ever "portrait" of the solar system taken by Voyager 1 on Valentine’s Day on Feb. 14, 1990, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. Venus, Earth, Jupiter, and Saturn, Uranus, Neptune are seen in these blown-up images, from left to right and top to bottom. Credit: NASA/JPL-Caltech

A quarter of a century has passed since NASA’s Voyager 1 spacecraft snapped the iconic image of Earth known as the “Pale Blue Dot” that shows all of humanity as merely a tiny point of light.

The outward bound Voyager 1 space probe took the ‘pale blue dot’ image of Earth 25 years ago on Valentine’s Day, on Feb. 14, 1990 when it looked back from its unique perch beyond the orbit of Neptune to capture the first ever “portrait” of the solar system from its outer realms.

Voyager 1 was 4 billion miles from Earth, 40 astronomical units (AU) from the sun and about 32 degrees above the ecliptic at that moment.

The idea for the images came from the world famous astronomer Carl Sagan, who was a member of the Voyager imaging team at the time.

He head the idea of pointing the spacecraft back toward its home for a last look as a way to inspire humanity. And to do so before the imaging system was shut down permanently thereafter to repurpose the computer controlling it, save on energy consumption and extend the probes lifetime, because it was so far away from any celestial objects.

Sagan later published a well known and regarded book in 1994 titled “Pale Blue Dot,” that refers to the image of Earth in Voyagers series.

This narrow-angle color image of the Earth, dubbed "Pale Blue Dot," is a part of the first ever "portrait" of the solar system taken by Voyager 1 on Valentine’s Day on Feb. 14, 1990.  Credit: NASA/JPL-Caltech
This narrow-angle color image of the Earth, dubbed “Pale Blue Dot,” is a part of the first ever “portrait” of the solar system taken by Voyager 1 on Valentine’s Day on Feb. 14, 1990. Credit: NASA/JPL-Caltech

“Twenty-five years ago, Voyager 1 looked back toward Earth and saw a ‘pale blue dot,’ ” an image that continues to inspire wonderment about the spot we call home,” said Ed Stone, project scientist for the Voyager mission, based at the California Institute of Technology, Pasadena, in a statement.

Six of the Solar System’s nine known planets at the time were imaged, including Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The other three didn’t make it in. Mercury was too close to the sun, Mars had too little sunlight and little Pluto was too dim.

Voyager snapped a series of images with its wide angle and narrow angle cameras. Altogether 60 images from the wide angle camera were compiled into the first “solar system mosaic.”

Voyager 1 was launched in 1977 from Cape Canaveral Air Force Station in Florida as part of a twin probe series with Voyager 2. They successfully conducted up close flyby observations of the gas giant outer planets including Jupiter, Saturn, Uranus and Neptune in the 1970s and 1980s.

Both probes still operate today as part of the Voyager Interstellar Mission.

“After taking these images in 1990, we began our interstellar mission. We had no idea how long the spacecraft would last,” Stone said.

Hurtling along at a distance of 130 astronomical units from the sun, Voyager 1 is the farthest human-made object from Earth.

Solar System Portrait - 60 Frame Mosaic. The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever "portrait" of our solar system as seen from the outside.   Missing are Mercury, Mars and Pluto Credit:  NASA/JPL-Caltech
Solar System Portrait – 60 Frame Mosaic. The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever “portrait” of our solar system as seen from the outside. Missing are Mercury, Mars and Pluto. Credit: NASA/JPL-Caltech

Voyager 1 still operates today as the first human made instrument to reach interstellar space and continues to forge new frontiers outwards to the unexplored cosmos where no human or robotic emissary as gone before.

Here’s what Sagan wrote in his “Pale Blue Dot” book:

“That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. … There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Fly Along With Voyager

Fly along with NASA's Voyager spacecraft as the twin probes head towards interstellar space. In this artist's concept, a regularly updated gauge using data from the two spacecraft will indicate the levels of particles that originate from far outside our solar system and those that originate from inside our solar bubble. Those are two of the three signs scientists expect to see in interstellar space. The other sign is a change in the direction of the magnetic field. Image credit: NASA/JPL-Caltech

Far away, deep in the dark, near the edge of interstellar space, Voyager 1 and 2 are hurtling near the tenuous edge of the magnetic bubble surrounding the Sun known as the heliosphere and NASA wants you to ride along.

The Voyager website sports a new feature showing cosmic ray data. NASA’s Eyes on the Solar System, a popular Web-based interactive tool, contains a new Voyager module, that not only lets you ride along for the Voyagers’ journeys but also shows important scientific data flowing from the spacecraft.

[Warning:Play with this tool at your own risk. Interacting with this online feature can seriously impact your time; in an educational way, of course!]

As Voyager 1 explores the outer limits of the heliosphere, where the breath from our Sun is just a whisper, scientists are looking for three key signs that the spacecraft has left our solar system and entered interstellar space, or the space between stars. Voyager 1 began heading for the outer Solar System after zipping through the Saturn system in 1980.

The new module contains three gauges, updated every six hours from real data from Voyager 1 and 2, that indicate the level of fast-moving particles, slower-moving particles and the direction of the magnetic field. Fast-moving charged particles, mainly protons, come from distant stars and originate from outside the heliosphere. Slower-moving particles, also mainly protons, come from within the heliosphere. Scientists are looking for the levels of outside particles to jump dramatically while inside particles dip. If these levels hold steady, it means the Voyager spacecraft no longer feel the wind from our Sun and the gulf between stars awaits.

Over the past couple of years, data from Voyager 1, the most distant man-made object, show a steady increase of high-powered cosmic radiation indicating the edge is near, scientists say. Voyager 1 appears to have reached the last region before interstellar space. Scientists dubbed the region the “magnetic highway.” Particles from outside are streaming in while particles from inside are streaming out. Voyager 2’s instruments detect slight drops in inside particles but scientists don’t think the probe has entered the area yet.

Scientists also expect a change in the direction of the magnetic field. While particle data is updated every six hours, analyses of the magnetic field data usually takes a few months to prepare.

A snapshot riding along with Voyager 1's looking back at the Sun and inner solar system. The positions of Voyager 2 and Pioneers 10 and 11 show within the viewport as well.
A snapshot riding along with Voyager 1’s looking back at the Sun and inner solar system. The positions of Voyager 2 and Pioneers 10 and 11 show within the viewport as well.

Although launched first, Voyager 2 lags behind its twin Voyager 1 by more than 20 times the distance between the Earth and the Sun. Voyager 2 blasted off August 20, 1977 aboard a Titan-Centaur rocket from Cape Canaveral, Florida. The nuclear-powered craft visited Jupiter and Saturn with an additional mission, called the Grand Tour, to study Uranus and Neptune. Voyager 1 launched two weeks later on September 5, 1977. With a faster flight path, Voyager 1 arrived at Jupiter four months before its sister craft. Voyager 1 went on to study Saturn before using the ringed planet’s gravity field to slingshot it up and out of the plane of the solar system toward the constellation Ophiuchus, the Serpent Bearer.

NASA’s Eyes on the Solar System allows viewers to hitch a ride with any of NASA’s spacecraft as they explore the solar system. Time can be slowed for a near approach of a moon or asteroid or sped up to coast between the planets. Watch close at just the right moment and you can witness one of the spacecrafts roll maneuvers. All spacecraft movements are based on actual spacecraft navigation data.

Check out the Voyager module here, and check out the rest of the the Solar System here at Eyes on the Solar System.