NASA is Working on Technology to 3D Print Circuits in Space

Image of a 3D-printed circuit on display during the Goddard Field Day event that launched on the Suborbital Technology Experiment Carrier-9 (SubTEC-9) technology test flight from NASA's Wallops Flight Facility in April 2023. (Credit: NASA/Karl B. Hille)

A collaboration of engineers from NASA and academia recently tested hybrid printed electronic circuits near the edge of space, also known as the Kármán line. The space-readiness test was demonstrated on the Suborbital Technology Experiment Carrier-9, or (SubTEC-9), sounding rocket mission, which was launched from NASA’s Wallops Flight Facility on April 25 and reached an altitude of approximately 174 kilometers (108 miles), which lasted only a few minutes before the rocket descended to the ground via parachute.

Continue reading “NASA is Working on Technology to 3D Print Circuits in Space”

Station Astronauts Unload Cygnus Science; Antares Launch Gallery

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Astronauts aboard the International Space Station are now busily unloading nearly four tons of science experiments, research gear, station equipment and crew supplies – following the spectacular launch of the Orbital ATK Antares rocket earlier this week on Sunday Nov. 12 from Virginia’s eastern shore that propelled the Cygnus cargo freighter to an on time arrival two days later on Tuesday Nov. 14.

The Orbital ATK Cygnus spacecraft was christened the S.S. Gene Cernan and named in honor of NASA’s Apollo 17 lunar landing commander; Gene Cernan.

Among the goodies delivered by the newly arrived S.S. Gene Cernan Cygnus OA-8 supply run to resident the crew of six astronauts and cosmonauts from the US, Russia and Italy are ice cream, pizza and presents for the holidays. They are enjoying the fruits of the earthy labor of thousands of space workers celebrating the mission’s success.

The six-member Expedition 53 crew poses for a portrait inside the Japanese Kibo laboratory module with the VICTORY art spacesuit that was hand-painted by cancer patients in Russia and the United States. On the left (from top to bottom) are NASA astronauts Joe Acaba and Mark Vande Hei with cosmonaut Alexander Misurkin of Roscosmos. On the right (from top to bottom) are European Space Agency astronaut Paolo Nespoli, cosmonaut Sergey Ryazanskiy of Roscosmos and Expedition 53 Commander Randy Bresnik of NASA. Credit: NASA/ESA/Roscosmos

The journey began with the flawless liftoff of the two stage Antares rocket shortly after sunrise Sunday at 7:19 a.m. EST, Nov. 12, rocket from Pad-0A at NASA’s Wallops Flight Facility in Virginia.

Check out the expanding gallery of launch imagery and videos captured by this author and several space colleagues of Antares prelaunch activities around the launch pad and through Sunday’s stunningly beautiful sunrise blastoff.

After a carefully choreographed series of intricate thruster firings to raise its orbit in an orbital pursuit over the next two days, the Cygnus spacecraft on the OA-8 resupply mission for NASA arrived in the vicinity of the orbiting research laboratory.

The Orbital ATK Cygnus OA-8 spacecraft is pictured after it had been grappled with the Canadarm2 robotic arm by astronauts Paolo Nespoli and Randy Bresnik on Nov. 14, 2017. Credit: NASA

Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) assisted by NASA astronaut Randy Bresnik then deftly maneuvered the International Space Station’s 57.7-foot-long (17.6 meter-long) Canadarm2 robotic arm to grapple and successfully capture the Cygnus cargo freighter at 5:04 a.m., Tuesday Nov. 14.

The station was orbiting 260 statute miles over the South Indian Ocean at the moment Nespoli grappled the S.S. Gene Cernan Cygnus spacecraft with the Canadian-built robotic arm.

Ground controllers at NASA’s Mission Control at the Johnson Space Center in Texas, then maneuvered the arm and robotic hand grappling Cygnus towards the exterior hull and berthed the cargo ship at the Earth-facing port of the stations Unity module.

The berthing operation was completed at 7:15 a.m. after all 16 bolts were driven home for hard mating as the station was flying 252 miles over the North Pacific in orbital night.

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

The Cygnus spacecraft dubbed OA-8 is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing and reliable basis.

Launch of Orbital ATK Antares rocket and Cygnus resupply ship on Nov. 12, 2017 from NASA Wallops in Virginia to the International Space Station. Credit: Trevor Mahlmann

Altogether over 7,400 pounds of science and research, crew supplies and vehicle hardware launched to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 300 ongoing research investigations.

Apollo 17 was NASA’s final lunar landing mission. Gere Cernan was the last man to walk on the Moon.

A portrait of Gene Cernan greets the astronauts as they open the hatch to the Cygnus cargo spacecraft named in his honor. Credit: NASA

Among the experiments flying aboard Cygnus are the coli AntiMicrobial Satellite (EcAMSat) mission, which will investigate the effect of microgravity on the antibiotic resistance of E. coli, the Optical Communications and Sensor Demonstration (OCSD) project, which will study high-speed optical transmission of data and small spacecraft proximity operations, the Rodent Research 6 habitat for mousetronauts who will fly on a future SpaceX cargo Dragon.

Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and release 14 CubeSats using a NanoRacks deployer, a record number for the spacecraft.

It will then be commanded to fire its main engine to lower its orbit and carry out a fiery and destructive re-entry into Earth’s atmosphere over the Pacific Ocean as it disposes of several tons of trash.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

The Cygnus OA-8 manifest includes:

Crew Supplies 2,734.1 lbs. / 1,240 kg
Science Investigations 1631.42 lbs. / 740 kg
Spacewalk Equipment 291.0 lbs. / 132 kg
Vehicle Hardware 1,875.2 lbs. / 851 kg
Computer Resources 75.0 lbs. / 34 kg

Total Cargo: 7,359.0 lbs. / 3,338 kg
Total Pressurized Cargo with Packaging: 7,118.7 lbs. / 3,229 kg
Unpressurized Cargo (NanoRacks Deployer): 240.3 lbs. / 109 kg

Under the Commercial Resupply Services-1 (CRS-1) contract with NASA, Orbital ATK will deliver approximately 66,000 pounds (30,000 kilograms) of cargo to the space station. OA-8 is the eighth of these missions.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

Beginning in 2019, the company will carry out a minimum of six cargo missions under NASA’s CRS-2 contract using a more advanced version of Cygnus.

Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Orbital ATK’s Antares rocket and S.S. Gene Cernan Cygnus OA-8 resupply ship pierce the oceanside clouds over NASA Wallops Flight Facility in Virginia, after sunrise liftoff on Nov. 12, 2017 bound for the ISS. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of Orbital ATK Antares rocket and Cygnus resupply ship on Nov. 12, 2017 from NASA Wallops in Virginia to the International Space Station. Credit: Trevor Mahlmann

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com

Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com

Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com

Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer

Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer

Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer

The Orbital ATK Antares rocket topped with the Cygnus OA-8 spacecraft creates a beautiful water reflection in this prelaunch nighttime view across the inland waterways. Launch is targeted for Nov. 11, 2017, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Hardware for the Orbital ATK Antares rocket launching the Cygnus OA-8 resupply mission to the International Space Station on Nov. 11, 2017 – as it was being assembled for flight inside the Horizontal Integration Facility at NASA’s Wallops Flight Facility. Credit: Ken Kremer/kenkremer.com

Orbital ATK Cygnus OA-8 mission patch. Credit: Orbital ATK

S.S Gene Cernan Honoring Last Moonwalker Arrives at International Space Station Carrying Tons of Research Gear and Supplies

The Canadarm2 robotic arm is seen grappling the Orbital ATK S.S. Gene Cernan Cygnus resupply ship on Nov. 14, 2017 for berthing to the the International Space Station. Credit: NASA TV

The Canadarm2 robotic arm is seen grappling the Orbital ATK S.S. Gene Cernan Cygnus resupply ship on Nov. 14, 2017 for berthing to the the International Space Station. Credit: NASA TV

The S.S. Gene Cernan Cygnus spacecraft named in honor of the Apollo 17 lunar landing commander and launched by Orbital ATK from the eastern shore of Virgina at breakfast time Sunday, Nov. 12, arrived at the International Space Station early Tuesday morning, Nov 14, carrying over 3.7 tons of research equipment and supplies for the six person resident crew.

Soon thereafter at 5:04 a.m., Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) assisted by NASA astronaut Randy Bresnik successfully captured Orbital ATK’s Cygnus cargo freighter using the International Space Station’s 57.7-foot-long (17.6 meter-long) Canadarm2 robotic arm.

The station was orbiting 260 statute miles over the South Indian Ocean at the moment Nespoli grappled the S.S. Gene Cernan Cygnus spacecraft with the Canadian-built robotic arm.

Nespoli and Bresnik were working at a robotics work station inside the seven windowed domed Cupola module that offers astronauts the most expansive view outside to snare Cygnus with the robotic arms end effector.

The Cygnus cargo freighter – named after the last man to walk on the Moon – reached its preliminary orbit nine minutes after blasting off early Sunday atop the upgraded 230 version of the Orbital ATK Antares rocket from NASA’s Wallops Flight Facility in Virginia.

The flawless liftoff of the two stage Antares rocket took place shortly after sunrise Sunday at 7:19 a.m. EST, Nov. 12, rocket from Pad-0A at NASA’s Wallops Flight Facility in Virginia.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Sunday’s spectacular Antares launch delighted spectators – but came a day late due to a last moment scrub on the originally planned Veteran’s Day liftoff, Saturday, Nov. 11, when a completely reckless pilot flew below radar into restricted airspace just 5 miles away from the launch pad – forcing a sudden and unexpected halt to the countdown under absolutely perfect weather conditions.

After a carefully choreographed series of intricate thruster firings to raise its orbit over the next two days, the Cygnus spacecraft on the OA-8 resupply mission for NASA arrived in the vicinity of the orbiting research laboratory.

With Cygnus firmly in the grip of the robots hand, ground controllers at NASA’s Mission Control at the Johnson Space Center in Texas, maneuvered the arm towards the exterior hull and berth the cargo ship at the Earth-facing port of the stations Unity module.

1st stage capture was completed at 7:08 a. EST Nov 14.

After driving in the second stage gang of bolts, hard mate and capture were completed at 7:15 a.m.

The station was flying 252 miles over the North Pacific in orbital night at the time of berthing.

The Cygnus spacecraft dubbed OA-8 is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing and reliable basis.

NASA TV provided live coverage of the rendezvous and grappling.

Including Cygnus there are now five visiting vehicle spaceships parked at the space station including also the Russian Progress 67 and 68 resupply ships and the Russian Soyuz MS-05 and MS-06 crew ships.

International Space Station Configuration. Five spaceships are parked at the space station including the Orbital ATK Cygnus after Nov. 14, 2017 arrival, the Progress 67 and 68 resupply ships and the Soyuz MS-05 and MS-06 crew ships. Credit: NASA

Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and deploy several CubeSats before its fiery re-entry into Earth’s atmosphere as it disposes of several tons of trash.

On this flight, the Cygnus OA-8 spacecraft is jam packed with its heaviest cargo load to date!

Altogether over 7,400 pounds of science and research, crew supplies and vehicle hardware launched to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 300 ongoing research investigations.

Among the experiments flying aboard Cygnus are the coli AntiMicrobial Satellite (EcAMSat) mission, which will investigate the effect of microgravity on the antibiotic resistance of E. coli, the Optical Communications and Sensor Demonstration (OCSD) project, which will study high-speed optical transmission of data and small spacecraft proximity operations, the Rodent Research 6 habitat for mousetronauts who will fly on a future SpaceX cargo Dragon.

Cernan was commander of Apollo 17, NASA’s last lunar landing mission and passed away in January at age 82. He set records for both lunar surface extravehicular activities and the longest time in lunar orbit on Apollo 10 and Apollo 17.

The prime crew for the Apollo 17 lunar landing mission are: Commander, Eugene A. Cernan (seated), Command Module pilot Ronald E. Evans (standing on right), and Lunar Module pilot, Harrison H. Schmitt (left). They are photographed with a Lunar Roving Vehicle (LRV) trainer. Cernan and Schmitt used an LRV during their exploration of the Taurus-Littrow landing site. The Apollo 17 Saturn V Moon rocket is in the background. This picture was taken during October 1972 at Launch Complex 39A, Kennedy Space Center (KSC), Florida. Credit: Julian Leek

Under the Commercial Resupply Services-1 (CRS-1) contract with NASA, Orbital ATK will deliver approximately 66,000 pounds (30,000 kilograms) of cargo to the space station. OA-8 is the eighth of these missions.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

Beginning in 2019, the company will carry out a minimum of six cargo missions under NASA’s CRS-2 contract using a more advanced version of Cygnus.

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of Apollo17, NASA’s final lunar landing mission, on December 7, 1972, as seen from the KSC press site. Credit: Mark and Tom Usciak

………….

Ken’s upcoming outreach events:

Learn more about the upcoming SpaceX Falcon 9 Zuma launch on Nov 16, 2017, upcoming Falcon Heavy and CRS-13 resupply launches, NASA missions, ULA Atlas & Delta launches, SpySats and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Nov 15, 17: “SpaceX Falcon 9 Zuma launch, ULA Atlas NRO NROL-52 spysat launch, SpaceX SES-11, CRS-13 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Portrait of NASA astronaut Gene Cernan and floral wreath displayed during the Jan. 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring his life as the last Man to walk on the Moon. Credit: Ken Kremer/kenkremer.com

The next Orbital ATK Cygnus supply ship was christened the SS John Glenn in honor of Sen. John Glenn, one of NASA’s original seven astronauts as it stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center. Credit: Ken Kremer/Kenkremer.com

Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com

Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com

First Cygnus Cargo Ship from Virginia in Two Years Docks at Space Station

Installation complete! Orbital ATK's Cygnus cargo spacecraft was attached to the International Space_Station at 10:53 a.m. EDT on 23 Oct. 2016 after launching atop Antares rocket on 17 Oct. 2016 from NASA Wallops in Virginia. Credit: NASA

Installation complete! OrbitalATK's Cygnus cargo spacecraft was attached to the International Space_Station at 10:53 a.m.  EDT on 23 Oct 2016 after launching atop Antares rocket on 17 Oct. 2016 from NASA Wallops in Virginia. Credit: NASA
Installation complete! Orbital ATK’s Cygnus cargo spacecraft was attached to the International Space_Station at 10:53 a.m. EDT on 23 Oct. 2016 after launching atop Antares rocket on 17 Oct. 2016 from NASA Wallops in Virginia. Credit: NASA

After a two year gap, the first Cygnus cargo freight train from Virginia bound for the International Space Station (ISS) arrived earlier this morning – restoring this critical supply route to full operation today, Sunday, Oct. 23.

The Orbital ATK Cygnus cargo spacecraft packed with over 2.5 tons of supplies was berthed to an Earth-facing port on the Unity module of the ISS at 10:53 a.m. EDT.

The Cygnus OA-5 resupply ship slowly approaches the space station before the Canadarm2 reaches out and grapples it on Oct. 23, 2016. Credit: NASA TV
The Cygnus OA-5 resupply ship slowly approaches the space station before the Canadarm2 reaches out and grapples it on Oct. 23, 2016. Credit: NASA TV

The Cygnus OA-5 mission took flight atop the first re-engined Orbital ATK Antares rocket during a spectacular Monday night liftoff on Oct. 17 at 7:40 p.m. EDT from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.

Antares pair of RD-181 first stage engines were firing with some 1.2 million pounds of liftoff thrust and brilliantly lighting up the crystal clear evening skies in every direction to the delight of hordes of spectators gathered from near and far.

The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer

Cygnus is loaded with over 5,100 pounds of science investigations, food, supplies and hardware for the space station and its six-person multinational crew.

This was the first Antares launch from Virginia in two years following the rockets catastrophic failure just moments after liftoff on Oct. 28, 2014, which doomed the Orb-3 resupply mission to the space station – as witnessed by this author.

Orbital ATK’s Antares commercial rocket had to be overhauled with the completely new RD-181 first stage engines- fueled by LOX/kerosene – following the destruction of the Antares rocket and Cygnus supply ship two years ago.

The 14 story tall commercial Antares rocket launched for the first time in the upgraded 230 configuration – powered by a pair of the new Russian-built RD-181 first stage engines.

The RD-181 replaces the previously used AJ26 engines which failed shortly after the last liftoff on Oct. 28, 2014 and destroyed the rocket and Cygnus cargo freighter.

The launch mishap was traced to a failure in the AJ26 first stage engine turbopump and forced Antares launches to immediately grind to a halt.

After a carefully choreographed five day orbital chase, Cygnus approached the million pound orbiting outpost this morning.

After it was within reach, Expedition 49 Flight Engineers Takuya Onishi of the Japan Aerospace Exploration Agency and Kate Rubins of NASA carefully maneuvered the station’s 57.7-foot (17.6-meter) Canadian-built robotic arm to reach out and capture the Cygnus OA-5 spacecraft at 7:28 a.m. EDT.

It was approximately 30 feet (10 meters) away from the station as Onishi and Rubins grappled the resupply ship with the robotic arms snares.

Today’s installation of the Orbital ATK Cygnus OA-5 resupply ship makes four spaceships attached to the International Space Station on 23 October 2016. Credit: NASA
Today’s installation of the Orbital ATK Cygnus OA-5 resupply ship makes four spaceships attached to the International Space Station on 23 October 2016. Credit: NASA

After leak checks, the next step is for the crew to open the hatches between the pressurized Cygnus and Unity and begin unloading the stash aboard.

The 21-foot-long (6.4-meter) spacecraft is scheduled to spend about five weeks attached to the station. The crew will pack the ship with trash and no longer needed supplies and gear.

It will be undocked in November and then conduct several science experiments, including the Saffire fire experiment and deploy cubesats.

Thereafter it will be commanded to conduct the customary destructive re-entry in Earth’s atmosphere.

Cygnus cargo spacecraft atop Orbital ATK Antares rocket on Pad-0A prior to blastoff on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia on Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer
Cygnus cargo spacecraft atop Orbital ATK Antares rocket on Pad-0A prior to blastoff on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia on Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer

The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

Antares launch on Oct. 17, 2016 from NASA's Wallops Flight Facility in Virginia. Credit: © Patrick J. Hendrickson / Highcamera.com
Antares launch on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia. Credit: © Patrick J. Hendrickson / Highcamera.com

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He was reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

On-Ramp to the International Space Station (ISS) with Orbital ATL Antares rocket and Cygnus cargo freighter which launched on 17 Oct. 2016 and berthed at the Unity docking port on 23 Oct. 2016.    Credit: Ken Kremer/kenkremer
On-Ramp to the International Space Station (ISS) with Orbital ATL Antares rocket and Cygnus cargo freighter which launched on 17 Oct. 2016 and berthed at the Unity docking port on 23 Oct. 2016. Credit: Ken Kremer/kenkremer

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

An Antares rocket sunrise prior to blastoff from NASA’s Wallops Flight Facility on 17 Oct. 2016 bound for the ISS. Credit: Ken Kremer/kenkremer
An Antares rocket sunrise prior to blastoff from NASA’s Wallops Flight Facility on 17 Oct. 2016 bound for the ISS. Credit: Ken Kremer/kenkremer

Streak shot of Orbital ATK Antares rocket carrying Cygnus supply ship soars to orbit on Oct. 17, 2016  from Pad-0A at NASA’s Wallops Flight Facility in Virginia.  Credit: Ken Kremer/kenkremer
Streak shot of Orbital ATK Antares rocket carrying Cygnus supply ship soars to orbit on Oct. 17, 2016 from Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer

Antares ‘Return to Flight’ Blastoff Soars to Stellar Success

The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer

The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer

NASA WALLOPS FLIGHT FACILITY, VA – The ‘Return to Flight’ blastoff of Orbital ATK’s upgraded Antares rocket soared to a stellar success this evening, Oct. 17, on a space station bound mission to stock the orbiting outpost with two and a half tons of science and supplies.

The re-engined Orbital ATK Antares/Cygnus OA-5 mission lifted off at 7:45 p.m. EDT, tonight from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore spewing about 1.2 million pounds of liftoff thrust and brilliantly lighting up the evening skies in every direction.

Sporting a pair of more powerful new RD-181 engines, Antares roared off the launch pad somewhat more swiftly than the previous launches and consequently reached its preliminary orbit about one minute earlier.

Cygnus separated from the second stage as planned about 9 minutes after liftoff. The launch marked the first nighttime liftoff of Antares.

“It’s great to see launches to the International Space Station happening again from the Virginia coast – and it shows what can be accomplish with a close partnership of federal and state agencies, along with the U.S. industry, all working together,” said NASA Administrator Charles Bolden.

“I am incredibly proud of what you have all done,” said Bolden in post launch remarks to the launch team at Wallops Launch Control Center. “Thank you for all your hard work.”

Antares launch on Oct. 17, 2016 from NASA's Wallops Flight Facility in Virginia. Credit: © Patrick J. Hendrickson / Highcamera.com
Antares launch on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia. Credit: © Patrick J. Hendrickson / Highcamera.com

This was the first Antares launch in two years following the rockets catastrophic failure just moments after liftoff on Oct. 28, 2014, which doomed the Orb-3 resupply mission to the space station – as witnessed by this author.

The weather was absolutely perfect at 100% GO by launch time and consequently was visible to millions of East Coast residents from the Carolinas to Maine as well as inland regions.

Visibility was aided by cloudless evening skies that afforded a spectacular long distance view of the engine firings for both the first and second stages, as the rocket accelerated to orbit in a southeastwardly direction before arcing over towards the African continent.

The power producing and life giving solar arrays were deployed and unfurled about two hours after liftoff, finished at about 9:40 p.m.

Cygnus is loaded with over 5,100 pounds of science investigations, food, supplies and hardware for the space station and its crew.

Antares launch on Oct. 17, 2016 from NASA's Wallops Flight Facility in Virginia. Credit: © Patrick J. Hendrickson / Highcamera.com
Antares launch on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia. Credit: © Patrick J. Hendrickson / Highcamera.com

After Cygnus arrives at the ISS on Sunday, Oct. 23, Expedition 49 Flight Engineers Takuya Onishi of the Japan Aerospace Exploration Agency and Kate Rubins of NASA will grapple the spacecraft with the space station’s 57 foot long Canadian-built robotic arm. It will take hold of the Cygnus,

Ground controllers will then command the station’s arm to rotate and install it on the bottom of the station’s earth facing Unity module.

The Cygnus spacecraft will spend about five weeks attached to the space station. Cygnus will remain at the space station until November, when the spacecraft will depart the station and begin a fire experiment dubbed Saffire-II.

The 14 story tall commercial Antares rocket launched for the first time in the upgraded 230 configuration – powered by a pair of the new Russian-built RD-181 first stage engines.

For the OA-5 mission, the Cygnus advanced maneuvering spacecraft was loaded with approximately 2,425 kg (5,346 lb.) of supplies and science experiments for the International Space Station (ISS). The cargo was packed inside 56 cargo bags of multiple sizes.

The experiments will support dozens of new and existing investigations as the space station crews of Expeditions 49 and 50 contribute to about 250 science and research studies.

Among the science payloads aboard the Cygnus OA-5 mission is the Saffire II payload experiment to study combustion behavior in microgravity. Data from this exp,eriment will be downloaded via telemetry. In addition, a NanoRack deployer will release Spire Cubesats used for weather forecasting. These secondary payload operations will be conducted after Cygnus departs the space station.

Here is the Cygnus payload manifest:

Payloads:
• Spacecraft Fire Experiment-II (Saffire-II)
• Fast Neuron Spectrometer
• ACM and Experiment Tray
• SLMMD
Cargo:
• ISS Experiment Hardware
• EVA Equipment– EMU Repair Kit– EVA Supplies
• Emergency Equipment
• Photo/TV and Computer Resources– Computer – iPad Air 2
– Laptop – T61P and Connectors – Camera – Nikon D4
• ISS Hardware and Spare ORUs – Cupola Scratch Panes
– Water ORU
• Food, Crew Supplies and Crew Provisions
• Flight Crew Equipment
• Cargo Environment SensorsAdditional payload details can be found at www.nasa.gov/iss-science.

Streak shot of Orbital ATK Antares rocket carrying Cygnus supply ship soars to orbit on Oct. 17, 2016  from Pad-0A at NASA’s Wallops Flight Facility in Virginia.  Credit: Ken Kremer/kenkremer
Streak shot of Orbital ATK Antares rocket carrying Cygnus supply ship soars to orbit on Oct. 17, 2016 from Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer

The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He is reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Cygnus cargo spacecraft atop Orbital ATK Antares rocket on Pad-0A prior to blastoff on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia on Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer
Cygnus cargo spacecraft atop Orbital ATK Antares rocket on Pad-0A prior to blastoff on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia on Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer

The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA's Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer
2 Moons and Antares on the launch pad on the evening of Oct. 15, 2016 at NASA's Wallops Flight Facility in Virginia in this water reflection shot.  Liftoff of the OA-5 mission to the ISS is planned for Oct. 17, 2016. Credit: Ken Kremer/kenkremer
2 Moons and Antares on the launch pad on the evening of Oct. 15, 2016 at NASA’s Wallops Flight Facility in Virginia in this water reflection shot. Liftoff of the OA-5 mission to the ISS is planned for Oct. 17, 2016. Credit: Ken Kremer/kenkremer

Antares Return to Flight Set for Magnificent Monday Night Launch – Watch Live

The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA's Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer

The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA's Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer

NASA WALLOPS FLIGHT FACILITY, VA – The ‘Return to Flight’ blastoff of Orbital ATK’s upgraded Antares rocket will have to wait one more day to come to fruition with a magnificent Monday night launch – after a technical scrub was called this afternoon, Oct. 16, at NASA’s Virginia launch base due to a faulty cable.

The launch potentially offers a thrilling skyshow to millions of US East Coast spectators if all goes well.

Antares Launch Viewing Map. This “first-sight” map indicates potential to see Orbital ATK’s Antares rocket in the minutes following its launch on the OA-5 mission to the ISS on October 16, 2016. Credit: Orbital ATK
Antares Launch Viewing Map. This “first-sight” map indicates potential to see Orbital ATK’s Antares rocket in the minutes following its launch on the OA-5 mission to the ISS on October 16, 2016. Credit: Orbital ATK

Despite picture perfect Fall weather, technical gremlins intervened to halt Sunday nights planned commercial cargo mission for NASA carrying 2.5 tons of science and supplies bound for the International Space Station (ISS).

The launch of the Orbital ATK CRS-5 mission is now scheduled for October 17 at 7:40 p.m. EDT, from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.

You can watch the launch live on NASA TV as well as the agency’s website beginning at 6:30 p.m. EDT Oct 17.

Mondays liftoff is slated to take place approximately 23 minutes earlier then Sunday’s hoped for time of 8:03 p.m. EDT in order to match the moment when the orbital plane of the station passes on NASA Wallops.

The weather outlook on Monday remains extremely favorable with a 95 percent chance of acceptable conditions at launch time.

A nearly full moon has risen over Antares the past few days at the launch pad.

2 Moons and Antares on the launch pad on the evening of Oct. 15, 2016 at NASA's Wallops Flight Facility in Virginia in this water reflection shot.  Liftoff of the OA-5 mission to the ISS is planned for Oct. 17, 2016. Credit: Ken Kremer/kenkremer
2 Moons and Antares on the launch pad on the evening of Oct. 15, 2016 at NASA’s Wallops Flight Facility in Virginia in this water reflection shot. Liftoff of the OA-5 mission to the ISS is planned for Oct. 17, 2016. Credit: Ken Kremer/kenkremer

Announcement of the launch scrub of the mission – also known as OA-5 – came just as the six hour countdown was set to begin after engineers discovered the bad cable.

“Today’s launch of Orbital ATK’s Antares rocket is postponed 24 hours due to a ground support equipment (GSE) cable that did not perform as expected during the pre-launch check out,” officials at NASA Wallops said.

The faulty cable was a component of the rocket’s hold down system at the pad, Orbital ATK officials told Universe Today after the scrub was announced.

Technicians have spares on hand and are working now to replace the cable in time to permit a Monday evening launch.

“We have spares on hand and rework procedures are in process. The Antares and Cygnus teams are not currently working any technical issues with the rocket or the spacecraft.”

Besides the cable the rocket is apparently in perfect shape.

“The Antares and Cygnus teams are not currently working any technical issues with the rocket or the spacecraft.”

Antares launches have been on hold for two years after it was grounded following its catastrophic failure just moments after liftoff on Oct. 28, 2014 that doomed the Orb-3 resupply mission to the space station – as witnessed by this author.

Orbital ATK’s Antares commercial rocket had to be overhauled with the completely new RD-181 first stage engines- fueled by LOX/kerosene – following the destruction of the Antares rocket and Cygnus supply ship two years ago.

The 14 story tall commercial Antares rocket also will launch for the first time in the upgraded 230 configuration – powered by new Russian-built first stage engines designed and manufactured by Energomesh.

The 133-foot-tall (40-meter) Antares was rolled out to pad 0A on Thursday, Oct. 13 – three days prior to Sunday’s intended launch date. It was raised to the vertical launch position on Friday.

The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA's Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer

The two stage Antares will carry the Orbital OA-5 Cygnus cargo freighter to orbit on a flight bound for the ISS and its multinational crew of astronauts and cosmonauts.

The launch marks the first nighttime liftoff of the Antares – and it could be visible up and down the eastern seaboard if weather and atmospheric conditions cooperate to provide a spectacular viewing opportunity to the most populated region in North America.

The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

Antares and the Moon at the pad at NASA's Wallops Flight Facility in Virginia as seen from a boat off shore in the Atlantic Ocean on Oct. 15, 2016. Credit: © Patrick J. Hendrickson / Highcamera.com
Antares and the Moon at the pad at NASA’s Wallops Flight Facility in Virginia as seen from a boat off shore in the Atlantic Ocean on Oct. 15, 2016. Credit: © Patrick J. Hendrickson / Highcamera.com

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Antares Raised to Launch Position for Sunday Night Launch to ISS

The Orbital ATK Antares rocket, with the Cygnus spacecraft onboard, is raised into the vertical position on launch Pad-0A, Friday, Oct. 14, 2016 at NASA's Wallops Flight Facility in Virginia. Credit: NASA/Bill Ingalls

The Orbital ATK Antares rocket, with the Cygnus spacecraft onboard, is raised into the vertical position on launch Pad-0A, Friday, Oct. 14, 2016 at NASA's Wallops Flight Facility in Virginia.  Credit: NASA/Bill Ingalls
The Orbital ATK Antares rocket, with the Cygnus spacecraft onboard, is raised into the vertical position on launch Pad-0A, Friday, Oct. 14, 2016 at NASA’s Wallops Flight Facility in Virginia. Credit: NASA/Bill Ingalls

NASA WALLOPS FLIGHT FACILITY, VA – After a two year stand down, an upgraded commercial Antares rocket was rolled out to the NASA Wallops launch pad on Virginia’s eastern shore and raised to its launch position today in anticipation of a spectacular Sunday night liftoff, Oct. 16, to the International Space Station (ISS) on a critical resupply mission for NASA.

Blastoff of the re-engined Orbital ATK Antares rocket is slated for 8:03 p.m. EDT on Oct. 16 from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.

The two year lull in Antares launches followed the rockets immediate grounding after its catastrophic failure just moments after liftoff on Oct. 28, 2014 that doomed the Orb-3 resupply mission to the space station – as witnessed by this author.

Officials had to postpone this commercial resupply mission – dubbed OA-5 – from mid-week due to Cat 3 Hurricane Nicole which slammed into Bermuda yesterday, Oct. 13, packing winds of about 125 mph, and is home to a critical NASA launch tracking station.

After the storm passed, engineers found the tracking station only suffered minor damage – so the GO was given to proceed with preparation for Sunday’s nighttime launch.

“Repairs to the station have been made and the team is currently readying to support the launch,” according to NASA officials.

Engineers are still testing the station to ensure its readiness.

“The Bermuda site provides tracking, telemetry and flight terminations support for Antares launches from NASA’s Wallops Flight Facility on Virginia’s Eastern Shore. Final testing is scheduled to be conducted the morning of Oct. 15 prior to the launch readiness review later that day.”

The Orbital ATK Antares rocket, with the Cygnus spacecraft onboard, is rolled out of the Horizontal Integration Facility (HIF) to begin the approximately half-mile journey to launch Pad-0A, Thursday, Oct. 13, 2016 at NASA's Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station.  Credit: (NASA/Bill Ingalls)
The Orbital ATK Antares rocket, with the Cygnus spacecraft onboard, is rolled out of the Horizontal Integration Facility (HIF) to begin the approximately half-mile journey to launch Pad-0A, Thursday, Oct. 13, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: (NASA/Bill Ingalls)

If all goes well Antares is sure to provide a dazzling nighttime skyshow from NASA’s Virginia launch base Sunday night – and potentially offering a thrilling spectacle to millions of US East Coast spectators.

The launch window last five minutes and the weather outlook is currently favorable.

The launch will air live on NASA TV and the agency’s website beginning at 7 p.m. EDT Oct 16.

Antares rocket stands erect, reflecting off the calm waters the night before a launch from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014.    Credit: Ken Kremer/kenkremer.com
Antares rocket stands erect, reflecting off the calm waters the night before a launch from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer/kenkremer.com

The 133-foot-tall (40-meter) Antares was rolled out to pad 0A on Thursday, Oct. 13 – three days prior to the anticipated launch date – and raised to the vertical launch position this afternoon.

The two stage Antares will carry the Orbital OA-5 Cygnus cargo freighter to orbit on a flight bound for the ISS and its multinational crew of astronauts and cosmonauts.

On-Ramp to the Orbital Sciences Antares rocket and International Space Station - ready for blastoff from NASA Wallops in this file photo.  Credit: Ken Kremer – kenkremer.com
On-Ramp to the Orbital Sciences Antares rocket and International Space Station – ready for blastoff from NASA Wallops in this file photo. Credit: Ken Kremer – kenkremer.com

The launch marks the first nighttime liftoff of the Antares – and it could be visible up and down the eastern seaboard if weather and atmospheric conditions cooperate to provide a spectacular viewing opportunity to the most populated region in North America.

The 14 story tall commercial Antares rocket also will launch for the first time in the upgraded 230 configuration – powered by new Russian-built first stage engines.

Orbital ATK’s Antares commercial rocket had to be overhauled with the completely new RD-181 first stage engines – fueled by LOX/kerosene – following the destruction of the Antares rocket and Cygnus supply ship two years ago.

The RD-181 replaces the previously used AJ26 engines which failed moments after liftoff during the last launch on Oct. 28, 2014 resulting in a catastrophic loss of the rocket and Cygnus cargo freighter.

The launch mishap was traced to a failure in the AJ26 first stage engine turbopump and caused Antares launches to immediately grind to a halt.

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage.   Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016. New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage. Credit: Ken Kremer/kenkremer.com

For the OA-5 mission, the Cygnus advanced maneuvering spacecraft will be loaded with approximately 2,400 kg (5,290 lbs.) of supplies and science experiments for the International Space Station (ISS).

“Cygnus is loaded with the Saffire II payload and a nanoracks cubesat deployer,” Frank DeMauro, Orbital ATK Cygnus program manager, told Universe Today in a interview.

Among the science payloads aboard the Cygnus OA-5 mission is the Saffire II payload experiment to study combustion behavior in microgravity. Data from this experiment will be downloaded via telemetry. In addition, a NanoRack deployer will release Spire Cubesats used for weather forecasting. These secondary payload operations will be conducted after Cygnus departs the space station.

Other experiments include a study on the effect of lighting on sleep and daily rhythms, collection of health-related data, and a new way to measure neutrons.

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

The Orbital ATK Antares rocket, with the Cygnus spacecraft aboard. Credit: NASA/Bill Ingalls
The Orbital ATK Antares rocket, with the Cygnus spacecraft aboard. Credit: NASA/Bill Ingalls

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA Targets ‘Return to Flight’ of Upgraded Antares for mid-October for Station Resupply

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

NASA is targeting mid-October for the ‘Return to Flight’ launch of the upgraded Orbital ATK Antares rocket on a cargo mission to resupply the International Space Station (ISS) for the first time in nearly two years.

The 14 story tall commercial Antares rocket will launch for the first time in the upgraded 230 configuration powered by new Russian-built first stage engines.

In light of the grounding of the SpaceX Falcon 9 and Dragon cargo flights following the catastrophic Sept.1 launch pad disaster,and the catastrophic Antares launch failure in Oct. 2014, this Orbital ATK mission becomes more critical than ever to keep the space station stocked and fully operational for the resident crews with a reliable American supply train.

NASA and Orbital ATK announced that the re-engined Antares will launch during a five-day launch window that opens no earlier than October 9-13, 2016 on the OA-5 Cygnus cargo mission from the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.

“A more specific date will be identified upon completion of final operational milestones and technical reviews,” according to statements from NASA and Orbital ATK.

If Antares launches on Oct. 9, liftoff is set 10:47 p.m. EDT and becomes progressively earlier on succeeding days. The launch time moves up to 9:13 p.m. EDT on Oct. 13.

If the launch takes place during this window, it will mark the first truly nighttime launch for Antares from Virgina.

“The arrival and berthing of Cygnus to the International Space Station will be determined by the exact launch date and in coordination with other space station activities,” says NASA.

Orbital ATK's Cygnus cargo spacecraft, protected inside the vertical container shown here, was shipped from our payload processing facility on Wallops main base to our spacecraft fueling facility on Wallops Island earlier this week.  Credit: NASA
Orbital ATK’s Cygnus cargo spacecraft, protected inside the vertical container shown here, was shipped from our payload processing facility on Wallops main base to our spacecraft fueling facility on Wallops Island earlier this week. Credit: NASA

The Cygnus cargo spacecraft was moved this week from the NASA Wallops payload processing facility to the spacecraft fueling facility on Wallops Island.

The next step is to integrate Cygnus onto the Orbital ATK Antares 230 rocket inside the HIF (Horizontal Integration Facility) in anticipation of the launch slated for no earlier than Oct. 9 at 10:47 p.m. EDT.

The Antares 230 medium-class commercial launch vehicle rocket has been upgraded with new first stage Russian-built RD-181 engines fueled by LOX/kerosene – that had to be fully validated before launching NASA’s precious cargo to the International Space Station (ISS).

For the OA-5 mission, the Cygnus advanced maneuvering spacecraft will be loaded with approximately 2,400 kg (5,290 lbs.) of supplies and science experiments for the International Space Station (ISS).

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

Orbital ATK’s Antares commercial rocket had to be overhauled with completely new first stage engines following the catastrophic launch failure nearly two years ago on October 28, 2018 just seconds after blastoff that doomed the Orb-3 resupply mission to the space station.

The goal of the Antares ‘Return to Flight’ mission is to launch Orbital ATK’s Cygnus cargo freighter on the OA-5 resupply mission for NASA to the ISS and restore the Antares rocket to flight status.

To that end the aerospace firm completed a successful 30 second long test firing of the re-engined first stage on May 31 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Launch Pad 0A – as I reported here earlier.

First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit:  Ken Kremer/kenkremer.com
First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit: Ken Kremer/kenkremer.com

Teams from Orbital ATK and NASA have been scrutinizing the data in great detail ever since then to ensure the rocket is really ready before committing to the high stakes launch.

“Orbital ATK completed a stage test at the end of May and final data review has confirmed the test was successful, clearing the way for the Antares return to flight,” said the company.

“Simultaneously, the company has been conducting final integration and check out of the flight vehicle that will launch the OA-5 mission to ensure that all technical, quality and safety standards are met or exceeded.”

The projected launch date has been delayed several times since the May 31 hot fire test to deal with ‘vibration’ issues detected during the test.

Antares launches had immediately ground to a halt following the devastating launch failure 23 months ago which destroyed the rocket and its critical payload of space station science and supplies for NASA in a huge fireball just seconds after blastoff – as witnessed by this author.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

As a direct consequence of the catastrophic launch disaster, Orbital ATK managers decided to outfit the Antares medium-class rocket with new first stage RD-181 engines built in Russia.

The launch mishap was traced to a failure in the AJ26 first stage engine turbopump and caused Antares launches to immediately grind to a halt.

Top Orbital ATK management soon decided to ditch the AJ26s, which were 40 year old refurbished engines, originally built during the Soviet era for their moon rocket and originally known as the NK-33.

Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

The RD-181 replaces the previously used AJ26 engines which failed moments after liftoff during the last launch on Oct. 28, 2014 resulting in a catastrophic loss of the rocket and Cygnus cargo freighter.

The RD-181 flight engines are built by Energomash in Russia and had to be successfully tested via the static hot fire test to ensure their readiness.

Aerial view of an Orbital ATK Antares rocket on launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA's Wallops Flight Facility.  Credit: Patrick J. Hendrickson / Highcamera.com
Aerial view of an Orbital ATK Antares rocket on launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA’s Wallops Flight Facility. Credit: Patrick J. Hendrickson / Highcamera.com

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Aerial view of Orbital ATK launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA's Wallops Flight Facility.  Credit: Credit: Patrick J. Hendrickson / Highcamera.com
Aerial view of Orbital ATK launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA’s Wallops Flight Facility. Credit: Credit: Patrick J. Hendrickson / Highcamera.com

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in May 2016. Credit: Ken Kremer/kenkremer.com

Orbital ATK Integration of Upgraded Antares Kicks Into High Gear For 2016 ‘Return to Flight’

Orbital ATK Antares rocket hardware fills the Horizontal Integration Facility from end-to-end at NASA’s Wallops Flight Facility for upcoming ‘Return to Flight’ missions in 2016 from Virginia launch base. Credit: Ken Kremer/kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Assembly and testing of a significantly upgraded version of Orbital ATK’s commercially developed Antares rocket has kicked into high gear and is on target for rebirth – as the clock ticks down towards its ‘Return to Flight’ by approximately mid-2016 from a launch pad at the Mid-Atlantic Regional Spaceport (MARS) in Virginia, company managers told Universe Today during a recent up close media visit to see the actual flight hardware.

Mission integration operations are in full swing right now as technicians were actively processing Antares hardware in order to resume launches of critical cargo missions to crews living aboard the space station, during my visit to Orbital ATK’s Horizontal Integration Facility (HIF) at NASA’s Wallops Flight Facility in mid-December. Continue reading “Orbital ATK Integration of Upgraded Antares Kicks Into High Gear For 2016 ‘Return to Flight’”

Antares Launch Calamity Unfolds – Dramatic Photo Sequence

Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Orbital Sciences’ Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Story updated with link to Ken Kremer interview with NBC Nightly News[/caption]

NASA WALLOPS FLIGHT FACILITY, VA – The first night launch of Orbital Sciences’ commercial Antares rocket suddenly ended in total calamity some 10 seconds or so after liftoff when the base of the first stage exploded without warning over the launch pad at NASA’s Wallops Flight Facility, Va, at 6:22 p.m. EDT on Tuesday, October 28.

Watch the Antares launch disaster unfold into a raging inferno in this dramatic sequence of my photos shot on site.Check out my raw video of the launch – here. Read my first hand account- here.

I was interviewed by NBC News and you can watch the entire story and see my Antares explosion photos featured at NBC Nightly News on Oct. 29 here.

I was an eyewitness to the awful devastation suffered by the Orb-3 mission from the press viewing site at NASA Wallops located at a distance of about 1.8 miles away with a completely clear view to the launch complex.

A prime suspect in the disaster could be the pair Soviet-era built and US modified AJ26 engines that power the rocket’s first stage.

Another AJ26 engine failed and exploded during acceptance testing on May 22, 2014 at NASA’s Stennis Space Center in Mississippi. An extensive analysis and recheck by Orbital Scoences was conducted to clear this pair for flight.

See my exclusive photo of the AJ-26 engines below and a follow up story shortly.

Ignition of Orbital Sciences Antares rocket appears nominal at first until it explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Ignition of Orbital Sciences’ Antares rocket appears nominal at first until it explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

It was a picture perfect evening.

Blastoff of the 14 story Antares rocket took place from the beachside Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops situated on the eastern shore of Virginia.

Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences’ Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences’ Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Antares loses thrust after rocket explosion and begins falling back  after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares loses thrust after rocket explosion and begins falling back after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Orbital Sciences Antares rocket explodes intoan aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Antares falls back to the ground and being consumed shortly after blastoff and first stage explosion at NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares falls back to the ground and being consumed shortly after blastoff and first stage explosion at NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The highly anticipated 1st night launch of Antares would have wowed tens of millions of spectators up and down the eastern seaboard from South Carolina to Maine. Overall it was the 5th Antares launch.

The doomed Orb-3 mission was bound for the International Space Station (ISS) on a flight to bring up some 5000 pounds of (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission in the Cygnus resupply flight dubbed Orb-3 bound for the International Space Station (ISS).

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

The investigation into the launch failure will be led by Orbital Sciences.

“The root cause will be determined and corrective actions taken,” Frank Culbertson, Orbital’s Executive Vice President and General Manager of its Advanced Programs Group, said at a post launch briefing.

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer