As the midsummer Sun beats down on the southern mountains of Mars, bringing daytime temperatures soaring up to a balmy 25ºC (77ºF), some of their slopes become darkened with long, rusty stains that may be the result of water seeping out from just below the surface.
The image above, captured by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter on Feb. 20, shows mountain peaks within the 150-km (93-mile) -wide Hale Crater. Made from data acquired in visible and near infrared wavelengths the long stains are very evident, running down steep slopes below the rocky cliffs.
These dark lines, called recurring slope lineae (RSL) by planetary scientists, are some of the best visual evidence we have of liquid water existing on Mars today – although if RSL are the result of water it’s nothing you’d want to fill your astro-canteen with; based on the first appearances of these features in early Martian spring any water responsible for them would have to be extremely high in salt content.
According to HiRISE Principal Investigator Alfred McEwen “[t]he RSL in Hale have an unusually “reddish” color compared to most RSL, perhaps due to oxidized iron compounds, like rust.”
See a full image scan of the region here, and watch an animation of RSL evolution (in another location) over the course of a Martian season here.
Hale Crater itself is likely no stranger to liquid water. Its geology strongly suggests the presence of water at the time of its formation at least 3.5 billion years ago in the form of subsurface ice (with more potentially supplied by its cosmic progenitor) that was melted en masse at the time of impact. Today carved channels and gullies branch within and around the Hale region, evidence of enormous amounts of water that must have flowed from the site after the crater was created. (Source.)
The crater is named after George Ellery Hale, an astronomer from Chicago who determined in 1908 that sunspots are the result of magnetic activity.
UPDATE April 13: Conditions for subsurface salt water (i.e., brine) have also been found to exist in Gale Crater based on data acquired by the Curiosity rover. Gale was not thought to be in a location conducive to brine formation, but if it is then it would further strengthen the case for such salt water deposits in places where RSL have been observed. Read more here.
It’s hard to believe it now looking at Mars’ dusty, dessicated landscape that it once possessed a vast ocean. A recent NASA study of the Red Planet using the world’s most powerful infrared telescopes clearly indicate a planet that sustained a body of water larger than the Earth’s Arctic Ocean.
If spread evenly across the Martian globe, it would have covered the entire surface to a depth of about 450 feet (137 meters). More likely, the water pooled into the low-lying plains that cover much of Mars’ northern hemisphere. In some places, it would have been nearly a mile (1.6 km) deep.
Now here’s the good part. Before taking flight molecule-by-molecule into space, waves lapped the desert shores for more than 1.5 billion years – longer than the time life needed to develop on Earth. By implication, life had enough time to get kickstarted on Mars, too.
Using the three most powerful infrared telescopes on Earth – the W. M. Keck Observatory in Hawaii, the ESO’s Very Large Telescope and NASA’s Infrared Telescope Facility – scientists at NASA’s Goddard Space Flight Center studied water molecules in the Martian atmosphere. The maps they created show the distribution and amount of two types of water – the normal H2O version we use in our coffee and HDO or heavy water, rare on Earth but not so much on Mars as it turns out.
In heavy water, one of the hydrogen atoms contains a neutron in addition to its lone proton, forming an isotope of hydrogen called deuterium. Because deuterium is more massive than regular hydrogen, heavy water really is heavier than normal water just as its name implies. The new “water maps” showed how the ratio of normal to heavy water varied across the planet according to location and season. Remarkably, the new data show the polar caps, where much of Mars’ current-day water is concentrated, are highly enriched in deuterium.
On Earth, the ratio of deuterium to normal hydrogen in water is 1 to 3,200, but at the Mars polar caps it’s 1 to 400. Normal, lighter hydrogen is slowly lost to space once a small planet has lost its protective atmosphere envelope, concentrating the heavier form of hydrogen. Once scientists knew the deuterium to normal hydrogen ratio, they could directly determine how much water Mars must have had when it was young. The answer is A LOT!
Only 13% of the original water remains on the planet, locked up primarily in the polar regions, while 87% of the original ocean has been lost to space. The most likely place for the ocean would have been the northern plains, a vast, low-elevation region ideal for cupping huge quantities of water. Mars would have been a much more earth-like planet back then with a thicker atmosphere, providing the necessary pressure, and warmer climate to sustain the ocean below.
What’s most exciting about the findings is that Mars would have stayed wet much longer than originally thought. We know from measurements made by the Curiosity Rover that water flowed on the planet for 1.5 billion years after its formation. But the new study shows that the Mars sloshed with the stuff much longer. Given that the first evidence for life on Earth goes back to 3.5 billion years ago – just a billion years after the planet’s formation – Mars may have had time enough for the evolution of life.
So while we might bemoan the loss of so wonderful a thing as an ocean, we’re left with the tantalizing possibility that it was around long enough to give rise to that most precious of the universe’s creations – life.
To quote Charles Darwin: “… from so simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved.
If we really want to find life on other worlds, why do we keep looking for life based on carbon and water? Why don’t we look for the stuff that’s really different?
In the immortal words of Arthur C. Clarke, “Two possibilities exist: either we are alone in the Universe or we are not. Both are equally terrifying.”
I’m seeking venture capital for a Universal buffet chain, and I wondering if I need to include whatever the tentacle equivalent of forks is on my operating budget. If there isn’t any life, I’m going to need to stop watching so much science fiction and get on with helping humanity colonize space.
Currently, astrobiologists are hard at work searching for life, trying to answer this question. The SETI Institute is scanning radio signals from space, hoping to catch a message. Since humans use radio waves, maybe aliens will too. NASA is using the Curiosity Rover to search for evidence that liquid water existed on the surface of Mars long enough for life to get going. The general rule is if we find liquid water on Earth, we find life. Astronomers are preparing to study the atmospheres of extrasolar planets, looking for gasses that match what we have here on Earth.
Isn’t this just intellectually lazy? Do our scientists lack imagination? Aren’t they all supposed to watch Star Trek How do we know that life is going to look anything like the life we have on Earth? Oh, the hubris!
Who’s to say aliens will bother to communicate with radio waves, and will transcend this quaint transmission system and use beams of neutrinos instead. Or physics we haven’t even discovered yet? Perhaps they talk using microwaves and you can tell what the aliens are saying by how your face gets warmed up. And how do we know that life needs to depend on water and carbon? Why not silicon-based lifeforms, or beings which are pure energy? What about aliens that breathe pure molten boron and excrete seahorse dreams? Why don’t these scientists expand their search to include life as we don’t know it? Why are they so closed-minded?
The reality is they’re just being careful. A question this important requires good evidence. Consider the search for life on Mars. Back in the 1970s, the Viking Lander carried an experiment that would expose Martian soil to water and nutrients, and then try to detect out-gassing from microbes. The result of the experiment was inconclusive, and scientists still argue over the results today. If you’re going to answer a question like this, you want to be conclusive. Also, getting to Mars is pretty challenging to begin with. You probably don’t want to “half-axe” your science.
The current search for life is incremental and exhaustive. NASA’s Spirit and Opportunity searched for evidence that liquid water once existed on the surface of Mars. They found evidence of ancient water many times, in different locations. The fact that water once existed on the surface of Mars is established. Curiosity has extended this line of research, looking for evidence that water existed on the surface of Mars for long periods of time. Long enough that life could have thrived. Once again, the rover has turned up the evidence that scientists were hoping to see. Mars was once hospitable for life, for long periods of time. The next batch of missions will actually search for life, both on the surface of Mars and bringing back samples to Earth so we can study them here.
The search for life is slow and laborious because that’s how science works. You start with the assumption that since water is necessary for life on Earth, it makes sense to just check other water in the Solar System. It’s the low hanging fruit, then once you’ve exhausted all the easy options, you get really creative.
Scientists have gotten really creative about how and where they could search for life. Astrobiologists have considered other liquids that could be conducive for life. Instead of water, it’s possible that alternative forms of life could use liquid methane or ammonia as a solvent for its biological processes. In fact, this environment exists on the surface of Titan. But even if we did send a rover to Titan, how would we even know what to look for?
We understand how life works here, so we know what kinds of evidence to pursue. But kind of what evidence would be required to convince you there’s life as you don’t understand it? Really compelling evidence.
Go ahead and propose some alternative forms of life and how you think we’d go searching for it in the comments.
Thanks for watching! Never miss an episode by clicking subscribe. Our Patreon community is the reason these shows happen. We’d like to thank Kuri the Vegan Traveller and Craig Hayes, and the rest of the members who support us in making great space and astronomy content. Members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team. Want to get in on the action? Click here.
Venus really sucks. It’s as hot as an oven with a dense, poisonous atmosphere. But how did it get that way?
Venus sucks. Seriously, it’s the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you dead in moments.
Let’s push Venus into the Sun and be done with that terrible place. Its proximity is lowering our real estate values and who knows what sort of interstellar monstrosities are going to set up shop there, and be constantly knocking on our door to borrow the mower, or a cup or sugar, or sneak into our yard at night and eat all our dolphins.
You might argue that Venus is worth saving because it’s located within the Solar System’s habitable zone, that special place where water could exist in a liquid state on the surface. But we’re pretty sure it doesn’t have any liquid water. Venus may have been better in the past, clearly it started hanging out with wrong crowd, taking a bad turn down a dark road leading it to its current state of disrepair.
Could Venus have been better in the past? And how did it go so wrong? In many ways, Venus is a twin of the Earth. It’s almost the same size and mass as the Earth, and it’s made up of roughly the same elements. And if you stood on the surface of Venus, in the brief moments before you evacuated your bowels and died horribly, you’d notice the gravity feels pretty similar.
In the ancient past, the Sun was dimmer and cooler than it is now. Cool enough that Venus was much more similar to Earth with rivers, lakes and oceans. NASA’s Pioneer spacecraft probed beneath the planet’s thick clouds and revealed that there was once liquid water on the surface of Venus. And with liquid water, there could have been life on the surface and in those oceans.
Here’s where Venus went wrong. It’s about a third closer to the Sun than Earth, and gets roughly double the solar radiation. The Sun has been slowly heating up over the millions and billions of years. At some point, the planet reached a tipping point, where the water on the surface of Venus completely evaporated into the atmosphere.
Water vapor is a powerful greenhouse gas, and this only increased the global temperature, creating a runaway greenhouse effect on Venus. The ultraviolet light from the Sun split apart the water vapor into oxygen and hydrogen. The hydrogen was light enough to escape the atmosphere of Venus into space, while the oxygen recombined with carbon to form the thick carbon dioxide atmosphere we see today. Without that hydrogen, Venus’ water is never coming back.
Are you worried about our changing climate doing that here? Don’t panic. The amount of carbon dioxide released into the atmosphere of Venus is incomprehensible. According to the IPCC, the folks studying global warming, human activities have no chance of unleashing runaway global warming. We’ll just have the regular old, really awful global warming. So, it’s okay to panic a bit, but do it in the productive way that results in your driving your car less.
The Sun is still slowly heating up. And in a billion years or so, temperatures here will get hot enough to boil the oceans away. And then, Earth and Venus will be twins again and then we can push them both into the Sun.
I know, I said the words “climate change”. Feel free to have an argument in the comments below, but play nice and bring science.
Where did all of our water come from? What might seem like a simple question has challenged and intrigued planetary scientists for decades. So results just released by Rosetta mission scientists have been much anticipated and the observations of the Rosetta spacecraft instruments are telling us to look elsewhere. The water of comet 67P/Churyumov-Gerasimenko does not resemble Earth’s water.
Because the Earth was extremely hot early in its formation, scientists believe that Earth’s original water should have boiled away like that from a boiling kettle. Prevailing theories have considered two sources for a later delivery of water to the surface of the Earth once conditions had cooled. One is comets and the other is asteroids. Surely some water arrived from both sources, but the question has been which one is the predominant source.
There are two areas of our Solar System in which comets formed about 4.6 billion years ago. One is the Oort cloud far beyond Pluto. Everything points to Comet 67P’s origins being the other birthplace of comets – the Kuiper Belt in the region of Neptune and Pluto. The Rosetta results are ruling out Kuiper Belt comets as a source of Earth’s water. Previous observations of Oort cloud comets, such as Hyakutake and Hale-Bopp, have shown that they also do not have Earth-like water. So planetary scientists must reconsider their models with weight being given to the other possible source – asteroids.
The question of the source of Earth’s water has been tackled by Earth-based instruments and several probes which rendezvous with comets. In 1986, the first flyby of a comet – Comet 1P/Halley, an Oort cloud comet – revealed that its water was not like the water on Earth. How the water from these comets –Halley’s and now 67P – differs from Earth’s is in the ratio of the two types of hydrogen atoms that make up the water molecule.
Measurements by spectrometers revealed how much Deuterium – a heavier form of the Hydrogen atom – existed in relation to the most common type of Hydrogen in these comets. This ratio, designated as D/H, is about 1 in 6000 in Earth’s ocean water. For the vast majority of comets, remote or in-situ measurements have found a ratio that is higher which does not support the assertion that comets delivered water to the early Earth surface, at least not much of it.
Most recently, Hershel space telescope observations of comet Hartley 2 (103P/Hartley) caused a stir in the debate of the source of Earth’s water. The spectral measurements of the comet’s light revealed a D/H ratio just like Earth’s water. But now the Hershel observation has become more of an exception because of Rosetta’s latest measurements.
The new measurements of 67P were made by the ROSINA Double Focusing Mass Spectrometer (DFMS) on board Rosetta. Unlike remote observations using light which are less accurate, Rosetta was able to accurately measure the quantities of Deuterium and common Hydrogen surrounding the comet. Scientists could then simply determine a ratio. The results are reported in the paper “67P/Churyumov-Gerasimenko, a Jupiter Family Comet with a high D/H ratio” by K. Altwegg, et al., published in the 10 December 2014 issue of Science.
The ROSINA instrument observations determined a ratio of 5.3 ± 0.7 × 10-4, which is approximately 3 times the ratio of D/H for Earth’s water. These results do not exclude comets as a source of terrestrial water but they do redirect scientists to consider asteroids as the predominant source. While asteroids have much lower water content compared with comets, asteroids, and their smaller versions, meteoroids, are more numerous than comets. Every meteor/falling star that we see burning up in our atmosphere delivers a myriad of compounds, including water, to Earth. Early on, the onslaught of meteoroids and asteroids impacting Earth was far greater. Consequently, the small quantities of water added delivered by each could add up to what now lies in the oceans, lakes, streams, and even our bodies.
Everywhere we look on Earth, we find life. Even in the strangest corners of planet. What other places in the Universe might be habitable?
There’s life here on Earth, but what other places could there be life? This could be life that we might recognize, and maybe even life as we don’t understand it.
People always accuse me of being closed minded towards the search for life. Why do I always want there to be an energy source and liquid water? Why am I so hydrocentric? Scientists understand how life works here on Earth. Wherever we find liquid water, we find life: under glaciers, in your armpits, hydrothermal vents, in acidic water, up your nose, etc.
Water acts as a solvent, a place where atoms can be moved around and built into new structures by life forms. It makes sense to search for liquid water as it always seems to have life here. So where could we go searching for liquid water in the rest of the Universe?
Under the surface of Europa, there are deep oceans. They’re warmed by the gravitational interactions of Jupiter tidally flexing the surface of the moon. There could be life huddled around volcanic vents within its ocean. There’s a similar situation in Saturn’s Moon Enceladus, which is spewing out water ice into space; there might be vast reserves of liquid water underneath its surface. You could imagine a habitable moon orbiting a gas giant in another star system, or maybe you can just let George Lucas imagine it for you and fill it with Ewoks.
Let’s look further afield. What about dying white dwarf stars? Even though their main sequence days are over, they’re still giving off a lot of energy, and will slowly cool down over the coming billions of years. Brown dwarfs could get in on this action as well. Even though they never had enough mass to ignite solar fusion, they’re still generating heat. This could provide a safe warm place for planets to harbor life.
It gets a little trickier in either of these systems. White and brown dwarfs would have very narrow habitable zones, maybe 1/100th the size of the one in our Solar System. And it might shift too quickly for life to get started or survive for very long. This is our view, what we know life to be with water as a solvent. But astrobiologists have found other liquids that might work well as solvents too.
What about life forms that live in oceans of liquid methane on Titan, or creatures that use silicon or boron instead of carbon. It might just not be science fiction after all. It’s a vast Universe out there, stranger than we can imagine. Astronomers are looking for life wherever makes sense – wherever there’s liquid water. And if they don’t find any there, they’ll start looking places that don’t make sense.
What do you think? When we first find life, what will be its core building block? Silicon? Boron? or something even more exotic?
And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!
A new model suggests that up to half of the water on Earth may be older than the Sun and the rest of the Solar System. The model indicates that much of our planet’s water originated in the molecular cloud that created our Solar System, rather than the disc of material that was orbiting the Sun 4.6 billion years ago.
“Chemistry tells us that Earth received a contribution of water from some source that was very cold – only tens of degrees above absolute zero, while the Sun being substantially hotter has erased this deuterium, or heavy water, fingerprint,” stated Ted Bergin, an astronomy professor at the University of Michigan who participated in the research.
“We let the chemistry evolve for a million years – the typical lifetime of a planet-forming disk – and we found that chemical processes in the disk were inefficient at making heavy water throughout the solar system. What this implies is if the planetary disk didn’t make the water, it inherited it. Consequently, some fraction of the water in our solar system predates the Sun.”
What this could mean is that water would be quite abundant in young solar systems since it doesn’t depend on the chemistry of the planetary disc, but what is in molecular clouds — making it easier, perhaps, for water to arise in planets.
Where ever we find water on Earth we find life. And so, it makes sense to search throughout the Solar System to find water. Well, here’s the crazy thing. We’re finding water just about everywhere in the Solar System. This changes our whole concept of the habitable zone. Continue reading “Astronomy Cast Ep. 352: Water, Water Everywhere!”
Surprise! Three planets believed to be good candidates for having water vapor in their atmosphere actually have much lower quantities than expected.
The planets (HD 189733b, HD 209458b, and WASP-12b) are “hot Jupiters” that are orbiting very close to their parent star, at a distance where it was expected the extreme temperatures would turn water into a vapor that could be seen from afar.
But observations of the planets with the Hubble Space Telescope, who have temperatures between 816 and 2,204 degrees Celsius (1,500 and 4,000 degrees Fahrenheit), show only a tenth to a thousandth of the water astronomers expected.
“Our water measurement in one of the planets, HD 209458b, is the highest-precision measurement of any chemical compound in a planet outside our solar system, and we can now say with much greater certainty than ever before that we’ve found water in an exoplanet,” stated Nikku Madhusudhan, an astrophysicist at the University of Cambridge, England who led the research. “However, the low water abundance we have found so far is quite astonishing.”
This finding, if confirmed by other observations, could force exoplanet formation theory to be revised and could even have implications for how much water is available in so-called “super-Earths”, rocky planets that are somewhat larger than our own, the astronomers said.
That theory states that planets form over time as small dust particles stick to each other and grow into larger bodies. As it becomes a planet and takes on an atmosphere from surrounding gas bits, it’s believed that those elements should be “enhanced” in proportion to its star, especially in the case of oxygen. That oxygen in turn should be filled with water.
“We should be prepared for much lower water abundances than predicted when looking at super-Earths (rocky planets that are several times the mass of Earth),” Madhusudhan stated.
The research will be published today (July 24) in the Astrophysical Journal.