NSV 11749 – Born Again and Grown Old

Not a black dwarf ... yet (white dwarf Sirius B)

[/caption]

In 1996, a Japanese amateur astronomer discovered a new star in the constellation Sagittarius. Dubbed V4334 Sgr, astronomers initially expected it to be a typical novae, but closer examination revealed it to be a previously predicted but unseen event known as a “Very Late Thermal Pulse” (VLTP), the last hurrah of a white dwarf as hydrogen from the exterior of the star is carried to lower depths where one last gasp of fusion occurs. Astronomers then identified a second star, V605 Aql, that had been caught undergoing a VLTP in 1919. Recently, astronomers from the National University of La Plata, in Argentina, have claimed to have uncovered a third star undergoing this rare event.

It has been estimated that roughly one star every year ends its main sequence life and heads down the path of making a planetary nebula. Many of them won’t become convective white dwarfs that could turn into stars that should undergo a VLTP, but conservative estimates suggest that roughly 10% should. At such a rate, there should be roughly one star every decade that undergoes this phase. Since the stars have already shed their outer layers, the rejuvenated fusion is not diminished by them, and these stars shine exceptionally brightly making them detectable through most of the galaxy. Yet prior to this new identification, only two have been discovered which suggests that many objects historically identified as novae may truly have been stars similar to V4334 Sgr and V605 Aql.

In 2005, David Williams, a member of the American Association of Variable Star Observers, gathered images from the Harvard College Astronomical Plate collection. This massive collection of over 500,000 photographic plates, was the result of an early and long running survey that photographed great portions of the sky repeatedly from 1885 until 1993. This collection allowed him to reconstruct the changes in brightness the star NSV 11749 underwent during its outburst.

The star first became visible on the photographic plates in 1899. It peaked in brightness in 1903 and remained at that brightness for several years, until 1907 when it began to fade away again. The amount of time it took to brighten as well as the total change in brightness were similar to the previously identified VLTP stars. Over the 15 years since it first became detectable, it disappeared from images several times, another feature seen in V4334 Sgr and V605 Aql. The sudden disappearance has been explained by ejections of carbon from the star which cools and forms small dust grains which are effective at blocking light in the visible portion of the spectrum until they disperse.

However, two key differences stands out: The overall time before the NSV 11749 faded was roughly twice as long as for V605 Aql and V4335 Aql. The authors suggest that this may be due to a different mass of the white dwarf behind the outbursts. If the two previously identified VLTP stars were close in mass, they would likely have similar properties, while NSV 11749 could potentially have a different mass. The second discrepancy was the presence of a young planetary nebula. In both of the previously identified cases, the stars were the center of nebulae, but infrared images of the star did not reveal any nebula or remaining dust from the previous outburst. Authors again attribute this to a different evolutionary timescale due to the star’s potentially different mass.

While this tentative new classification is hardly conclusive, it is a reminder that astronomers have only just begun to understand this phase of stellar evolution and there is a great need for further examples to help refine models. The evolution of V4334 Sgr moved roughly 100 times faster than simulations had predicted, prompting revisions to the models. Certainly, similar changes will be necessary as more VLTP stars are discovered. This era of a star’s life is important to astronomers because the light obscuring carbon ejection is expected to be a major source of this important element.

Uncloaking Type Ia Supernovae

This three-color composite of a portion of the Subaru Deep Field shows mostly galaxies with a few stars. The inset shows one of the 10 most distant and ancient Type Ia supernovae discovered by the American, Israeli and Japanese team.

Type Ia supernovae… Right now they are one of the most studied – and most mysterious – of all stellar phenomenon. Their origins are sheer conjecture, but explaining them is only half the story. Taking a look back into almost the very beginnings of our Universe is what it’s all about and a team of Japanese, Israeli, and U.S. astronomers have employed the Subaru Telescope to give us the most up-to-date information on these elementally explosive cosmic players.

By understanding the energy release of a Type Ia supernova, astronomers have been able to measure unfathomable distances and speculate on dark energy expansion. It was popular opinion that what caused them was a white dwarf star pulling in so much matter from a companion that it finally exploded, but new research points in a different direction. According to the latest buzz, it may very well be the merging of two white dwarfs.

“The nature of these events themselves is poorly understood, and there is a fierce debate about how these explosions ignite,” said Dovi Poznanski, one of the main authors of the paper and a post-doctoral fellow at the University of California, Berkeley, and Lawrence Berkeley National Laboratory.

“The main goal of this survey was to measure the statistics of a large population of supernovae at a very early time, to get a look at the possible star systems,” he said. “Two white dwarfs merging can explain well what we are seeing.”

Can you imagine the power behind this theory? The Type Ia unleashed a thermonuclear reaction so strong that it is able to be traced back to nearly the beginning of expansion after the Big Bang. By employing the Subaru telescope and its prime focus camera (Suprime-Cam), the team was able to focus their attention four times on a small area named the Subaru Deep Field. In their imaging they caught 150,000 individual galaxies containing a total of 40 Type Ia supernova events. One of the most incredible parts of these findings is that these events happened about five times more frequently in the early Universe. But no worries… Even though the mechanics behind them are still poorly understood, they still serve as “cosmic distance markers”.

“As long as Type Ias explode in the same way, no matter what their origin, their intrinsic brightnesses should be the same, and the distance calibrations would remain unchanged.” says Alex Filippenko, UC Berkeley professor of astronomy.

Original Story Source: University of Berkeley News Release. For Further Reading: National Astronomical Observatory of Japan: Subaru News Release.

Milky Way Harbors “Ticking Time Bombs”

New research shows that some old stars known as white dwarfs might be held up by their rapid spins, and when they slow down, they explode as Type Ia supernovae. Thousands of these "time bombs" could be scattered throughout our Galaxy. In this artist's conception, a supernova explosion is about to obliterate an orbiting Saturn-like planet. Credit: David A. Aguilar (CfA)

[/caption]

According to new research, the only thing that may be keeping elderly stars from exploding is their rapid spin. In a galaxy filled with old stars, this means we could literally be sitting on a nearby “time bomb”. Or is this just another scare tactic?

“We haven’t found one of these ‘time bomb’ stars yet in the Milky Way, but this research suggests that we’ve been looking for the wrong signs. Our work points to a new way of searching for supernova precursors,” said astrophysicist Rosanne Di Stefano of the Harvard-Smithsonian Center for Astrophysics (CfA).

In light of the two recently discovered supernova events in Messier 51 and Messier 101, it isn’t hard to imagine the Milky Way having more than one candidate for a Type Ia supernova. This is precisely the type of stellar explosion Di Stefano and her colleagues are looking for… and it happens when a white dwarf star goes critical. It has reached Chandrasekhar mass. Add any more weight and it blows itself apart. How does this occur? Some astronomers believe Type Ia supernova are sparked by accretion from a binary companion – or a collision of two similar dwarf stars. However, there hasn’t been much – if any – evidence to support either theory. This has left scientists to look for new answers to old questions. Di Stefano and her colleagues suggest that white dwarf spin might just be what we’re looking for.

“A spin-up/spin-down process would introduce a long delay between the time of accretion and the explosion. As a white dwarf gains mass, it also gains angular momentum, which speeds up its spin. If the white dwarf rotates fast enough, its spin can help support it, allowing it to cross the 1.4-solar-mass barrier and become a super-Chandrasekhar-mass star. Once accretion stops, the white dwarf will gradually slow down. Eventually, the spin isn’t enough to counteract gravity, leading to a Type Ia supernova.” explains Di Stefano. “Our work is new because we show that spin-up and spin-down of the white dwarf have important consequences. Astronomers therefore must take angular momentum of accreting white dwarfs seriously, even though it’s very difficult science.”

Sure. It might take a billion years for the spin down process to happen – but what’s a billion years in cosmic time? In this scenario, it’s enough to allow accretion to have completely stopped and a companion star to age to a white dwarf. In the Milky Way there’s an estimated three Type Ia supernovae every thousand years. If figures are right, a typical super-Chandrasekhar-mass white dwarf takes millions of years to spin down and explode. This means there could be dozens of these “time bomb” systems within a few thousand light-years of Earth. While we’re not able to ascertain their locations now, upcoming wide-field surveys taken with instruments like Pan-STARRS and the Large Synoptic Survey Telescope might give us a clue to their location.

“We don’t know of any super-Chandrasekhar-mass white dwarfs in the Milky Way yet, but we’re looking forward to hunting them out,” said co-author Rasmus Voss of Radboud University Nijmegen, The Netherlands.

And the rest of us hope you don’t find them…

Original Story Source: Harvard Smithsonian Center for Astrophysics News. For Further Reading: Spin-Up/Spin-Down models for Type Ia Supernovae.

Star Transforms Into A Diamond Planet

Schematic view of the Pulsar-Planet system PSR J1719-1438 showing the pulsar with 5.7 ms rotation period in the centre, and the orbit of the planet in comparison to the size of the sun (marked in yellow). Credit: Swinburne Astronomy Productions, Swinburne University of Technology

[/caption]

“Remember when you were young… You shone like the sun.” Four thousand light years away in the constellation of Serpens, a millisecond pulsar binary is pounding out its heartbeat. Meanwhile an international research team of scientists from Australia, Germany, Italy, the UK and the USA, including Prof. Michael Kramer from Max Planck Institute for Radio Astronomy in Bonn, German are listening in. Utilizing the 64-m radio telescope in Parkes, Australia, the team made a rather amazing discovery. The companion star could very well be an ultra-low mass carbon white dwarf… one that’s transformed itself into a planet made of pure diamond.

“The density of the planet is at least that of platinum and provides a clue to its origin”, said the research team leader, Prof. Matthew Bailes of Swinburne University of Technology in Australia. Bailes leads the “Dynamic Universe” theme in a new wide-field astronomy initiative, the Centre of Excellence in All-sky Astrophysics (CAASTRO). He is presently on scientific leave at Max Planck Institute for Radio Astronomy.

Like a lighthouse, PSR J1719-1438 emits radio signals which sweep around methodically. When researchers noticed a specific modulation every 130 minutes, they realized they were picking up a signature of planetary proportions. Given the distance of its orbit, the companion could very well be the core of a once massive star whose material was consumed by pulsar’s gravity.

“We know of a few other systems, called ultra-compact low-mass X-ray binaries, that are likely to be evolving according to the scenario above and may likely represent the progenitors of a pulsar like J1719-1438” said Dr. Andrea Possenti, of INAF-Osservatorio Astronomicodi Cagliari.

With almost all of its original mass gone, very little of the companion could be left save for carbon and oxygen… and stars still rich in lighter elements like hydrogen and helium won’t fit the equation. This leaves a density which could very well be crystalline – and a composition which closely resembles diamond.

“The ultimate fate of the binary is determined by the mass and orbital period of the donor star at the time of mass transfer. The rarity of millisecond pulsars with planet-mass companions means that producing such ‘exotic planets’ is the exception and not the rule, and requires special circumstances”, said Dr. Benjamin Stappers from the University of Manchester.

“The new discovery came as a surprise for us. But there is certainly a lot more we’ll find out about pulsars and fundamental physics in the following years”, concludes Michael Kramer.

Shine on, you crazy diamond…

Original Story Source: Max Planck Institut for Radio Astronomy and Transformation of a Star into a Planet in a Millisecond Pulsar Binary.

White Dwarf Stars Consume Rocky Bodies

This artist's concept shows a star encircled by a disk of gas and dust, the raw materials from which rocky planets such as Earth are thought to form. Image credit: NASA/JPL-Caltech

[/caption]

“I love rocky road… So won’t you buy another gallon, baby…” Yeah. We all love rocky road ice cream, but what do stars like to snack on? In the case of the white dwarf star it would appear that a rocky body – similar to Earth – could be a preferred blend. At one time astronomers thought the dense, elderly stars were just gathering dust… but apparently it’s the “bones” left-over from a planetary knosh.

Using the Keck I telescope on Mauna Kea in Hawaii, astronomer and study coauthor Ben Zuckerman of UCLA and his team have been studying two helium-dominated white dwarfs – stars PG1225-079 and HS2253+8023. About the size of Earth, but as massive as the Sun, these stars have a zone of “pollution” around them that’s around equal in mass to asteroid Ceres.

“This means that planet-like rocky material is forming at Earth-like distances or temperatures from these stars,” says Zuckerman. He also notes that it’s still unclear whether the material is from a planet, planet-like bodies or an asteroid, but it is clear that there’s a lot of it.

Because looking at a white dwarf star for evidence of solar systems wasn’t really a high priority consideration, these new findings could lend researchers some new clues. It’s not just dust – it’s dust with a signature. Because the white dwarf has a “clean” atmosphere of hydrogen or helium, finding other components in its spectra could point to a one-time presence of Earth-like planets. Zuckerman says that between 25 and 30 percent of white dwarfs have orbital systems that contain both large planets and smaller rocky bodies. After the dwarf forms, larger, Jupiter-mass planets can perturb the orbits of smaller bodies and bounce them toward the star.

“This is the first hint that despite all the oddball planetary systems we see, some of them must be more like our own,” says astronomer John Debes of NASA’s Goddard Space Flight Center in Greenbelt, Md., who was not involved in the study. “We think that most of these systems that show pollution must in some way approximate ours.”

How do they know if they have a candidate? Star PG1225-079 has a mix of elements, including magnesium, iron and nickel (along with others). These were found in ratios very similar in overall content of Earth. Star HS2253+8023 contains more than 85 percent oxygen, magnesium, silicon and iron. Not only are these assessments also similar to our planet, but found in the correct range where this type of rocky body should have formed.

“I’ve never seen so much detail in spectra,” says astronomer Jay Holberg of the University of Arizona in Tucson, who was not involved in the study. “People have seen iron and calcium and other things in these stars, but [this group has] gone off and found a whole slew of other elements.”

Pass the spoon… Before it melts.

Original Story Source: Science News Release.