Forget Betelgeuse, the Star V Sagittae Should Go Nova Within this Century

An artist's image of a white dwarf drawing material away from its companion. Image Credit: NASA

The star V Sagittae is the next candidate to explode in stellar pyrotechnics, and a team of astronomers set the year for that cataclysmic explosion at 2083, or thereabouts. V Sagittae is in the constellation Sagitta (latin for arrow,) a dim and barely discernible constellation in the northern sky. V Sagittae is about 1100 light years from Earth.

Continue reading “Forget Betelgeuse, the Star V Sagittae Should Go Nova Within this Century”

This Star Has Reached the End of its Life

This Picture of the Week from the NASA/ESA Hubble Space Telescope shows NGC 5307, a planetary nebula which lies about 10000 light years from Earth. It can be seen in the constellation Centaurus (The Centaur), which can be seen primarily in the southern hemisphere.  A planetary nebula is the final stage of a Sun-like star. As such, planetary nebulae allow us a glimpse into the future of our own Solar System. A star like our Sun will, at the end of its life, transform into a red giant. Stars are sustained by the nuclear fusion that occurs in their core, which creates energy. The nuclear fusion processes constantly try to rip the star apart. Only the gravity of the star prevents this from happening.  At the end of the red giant phase of a star, these forces become unbalanced. Without enough energy created by fusion, the core of the star collapses in on itself, while the surface layers are ejected outward. After that, all that remains of the star is what we see here: glowing outer layers surrounding a white dwarf star, the remnants of the red giant star’s core.  This isn’t the end of this star’s evolution though — those outer layers are still moving and cooling. In just a few thousand years they will have dissipated, and all that will be left to see is the dimly glowing white dwarf.

About 10,000 light years away, in the constellation Centaurus, is a planetary nebula called NGC 5307. A planetary nebula is the remnant of a star like our Sun, when it has reached what can be described as the end of its life. This Hubble image of NGC 5307 not only makes you wonder about the star’s past, it makes you ponder the future of our very own Sun.

Continue reading “This Star Has Reached the End of its Life”

This Star Has Been Going Nova Every Year, for Millions of Years

A nova star is like a vampire that siphons gas from its binary partner. As it does so, the gas is compressed and heated, and eventually it explodes. The remnant gas shell from that explosion expands outward and is lit up by the stars at the center of it all. Most of these novae explode about once every 10 years.

But now astrophysicists have discovered one remnant so large that the star that created it must have been erupting yearly for millions of years.

Continue reading “This Star Has Been Going Nova Every Year, for Millions of Years”

A Guide to Hunting Zombie Stars

R Aquarii is called a symbiotic star system because of their relationship. As the white dwarf draws in material from the Red Giant, it ejects some if it in weird looping patterns, seen in this Hubble image. Image Credit: By Judy Schmidt from USA - Symbiotic System R Aquarii, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=63473035
R Aquarii is called a symbiotic star system because of their relationship. As the white dwarf draws in material from the Red Giant, it ejects some if it in weird looping patterns, seen in this Hubble image. Image Credit: By Judy Schmidt from USA - Symbiotic System R Aquarii, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=63473035

Apparently not all supernovas work. And when they fail, they leave behind a half-chewed remnant, still burning from leftover heat but otherwise lifeless: a zombie star. Astronomers aren’t sure how many of these should-be-dead creatures lurk in the interstellar depths, but with recent simulations scientists are making a list of their telltale signatures so that future surveys can potentially track them down.

Continue reading “A Guide to Hunting Zombie Stars”

You’re Looking at an Actual Image of a White Dwarf Feeding on Material from a Larger Red Giant, 650 Light Years from Earth.

This image is from the SPHERE/ZIMPOL observations of R Aquarii, and shows the binary star itself, with the white dwarf feeding on material from the Mira variable, as well as the jets of material spewing from the stellar couple. Image Credit: ESO/Schmid et al.
This image is from the SPHERE/ZIMPOL observations of R Aquarii, and shows the binary star itself, with the white dwarf feeding on material from the Mira variable, as well as the jets of material spewing from the stellar couple. Image Credit: ESO/Schmid et al.

The SPHERE planet-hunting instrument on the European Southern Observatory’s Very Large Telescope captured this image of a white dwarf feeding on its companion star, a type of Red Giant called a Mira variable. Most stars exist in binary systems, and they spend an eternity serenely orbiting their common center of gravity. But something almost sinister is going on between these two.

Astronomers at the ESO have been observing the pair for years and have uncovered what they call a “peculiar story.” The Red Giant is a Mira variable, meaning it’s near the end of its life, and it’s pulsing up to 1,000 times as bright as our Sun. Each time it pulses, its gaseous envelope expands, and the smaller White Dwarf strips material from the Red Giant.

Continue reading “You’re Looking at an Actual Image of a White Dwarf Feeding on Material from a Larger Red Giant, 650 Light Years from Earth.”

348 Years Ago, a French Astronomer Monk Might have Witnessed the Collision Between a White and Brown Dwarf Star

This hourglass-shaped figure is named CK Vulpeculae. It was discovered by French Monk-Astronomer Per Dom Anthelme in 1670. A new study identifies it as the remnant of a collision between a white dwarf and a brown dwarf. Image Credit: ALMA (ESO/NAOJ/NRAO)/S. P. S. Eyres
This hourglass-shaped figure is named CK Vulpeculae. It was discovered by French Monk-Astronomer Per Dom Anthelme in 1670. A new study identifies it as the remnant of a collision between a white dwarf and a brown dwarf. Image Credit: ALMA (ESO/NAOJ/NRAO)/S. P. S. Eyres

There’s something poignant and haunting about ancient astronomers documenting things in the sky whose nature they could only guess at. It’s true in the case of Père Dom Anthelme, who in 1670 saw a star suddenly burst into view near the head of the constellation Cygnus, the Swan. The object was visible with the naked eye for two years, as it flared in the sky repeatedly. Then it went dark. We call that object CK Vulpeculae.

Continue reading “348 Years Ago, a French Astronomer Monk Might have Witnessed the Collision Between a White and Brown Dwarf Star”

Astronomers Figure Out How to use Gravitational Lensing to Measure the Mass of White Dwarfs

The technique of gravitational lensing relies on the presence of a large cluster of matter between the observer and the object to magnify light coming from that object. Credit: NASA

For the sake of studying the most distant objects in the Universe, astronomers often rely on a technique known as Gravitational Lensing. Based on the principles of Einstein’s Theory of General Relativity, this technique involves relying on a large distribution of matter (such as a galaxy cluster or star) to magnify the light coming from a distant object, thereby making it appear brighter and larger.

However, in recent years, astronomers have found other uses for this technique as well. For instance, a team of scientists from the Harvard-Smithsonian Center for Astrophysics (CfA) recently determined that Gravitational Lensing could also be used to determine the mass of white dwarf stars. This discovery could lead to a new era in astronomy where the mass of fainter objects can be determined.

The study which details their findings, titled “Predicting gravitational lensing by stellar remnants” appeared in the Monthly Noticed of the Royal Astronomical Society. The study was led by Alexander J. Harding of the CfA and included Rosanne Di Stefano, and Claire Baker (also from the CfA), as well as members from the University of Southampton, Georgia State University, the University of Nigeria, and Cornell University.

A Hubble image of the white dwarf star PM I12506+4110E (the bright object, seen in black in this negative print) and its field which includes two distant stars PM12-MLC1&2. Credit: Harding et al./NASA/HST

To put it simply, determining the mass of an astronomical object is one the greatest challenges for astronomers. Until now, the most successful method relied on binary systems because the orbital parameters of these systems depend on the masses of the two objects. Unfortunately, objects that are at the end states of stellar evolution – like black holes, neutron stars or white dwarfs – are often too faint or isolated to be detectable.

This is unfortunate, since these objects are responsible for a lot of dramatic astronomical events. These include the accretion of material, the emission of energetic radiation, gravitational waves, gamma-ray bursts, or supernovae. Many of these events are still a mystery to astronomers or the study of them is still in its infancy – i.e. gravitational waves. As they state in their study:

“Gravitational lensing provides an alternative approach to mass measurement. It has the advantage of only relying on the light from a background source, and can therefore be employed even for dark lenses. In fact, since light from the lens can interfere with the detection of lensing effects, compact objects are ideal lenses.”

As they go on to state, of the 18,000 lensing events that have been detected to date, roughly 10 to 15% are believed to have been caused by compact objects. However, scientists are unable to tell which of the detected events were due to compact lenses. For the sake of their study then, the team sought to circumvent this problem by identifying local compact objects and predicting when they might produce a lensing event so they could be studied.

Animation showing the white dwarf star Stein 2051B as it passes in front of a distant background star. Credit: NASA

“By focusing on pre-selected compact objects in the near vicinity of the Sun, we ensure that the lensing event will be caused by a white dwarf, neutron star, or black hole,” they state. “Furthermore, the distance and proper motion of the lens can be accurately measured prior to the event, or else afterwards. Armed with this information, the lensing light curve allows one to accurately measure the mass of the lens.”

In the end, the team determined that lensing events could be predicted from thousands of local objects. These include 250 neutron stars, 5 black holes, and roughly 35,000 white dwarfs. Neutron stars and black holes present a challenge since the known populations are too small and their proper motions and/or distances are not generally known.

But in the case of white dwarfs, the authors anticipate that they will provide for many lensing opportunities in the future. Based on the general motions of the white dwarfs across the sky, they obtained a statistical estimate that about 30-50 lensing events will take place per decade that could be spotted by the Hubble Space Telescope, the ESA’s Gaia mission, or NASA’s James Webb Space Telescope (JWST). As they state in their conclusions:

“We find that the detection of lensing events due to white dwarfs can certainly be observed during the next decade by both Gaia and HST. Photometric events will occur, but to detect them will require observations of the positions of hundreds to thousands of far-flung white dwarfs. As we learn the positions, distances to, and proper motions of larger numbers of white dwarfs through the completion of surveys such as Gaia and through ongoing and new wide-field surveys, the situation will continue to improve.”

The future of astronomy does indeed seem bright. Between improvements in technology, methodology, and the deployment of next-generation space and ground-based telescopes, there is no shortage of opportunities to see and learn more.

Further Reading: CfA, MNRAS

A Brown Dwarf Prevented a Regular Star from Going Through its Full Life Cycle

A team of Brazilian scientists recently observed a binary star system consisting of a white dwarf and a brown dwarf companion. Credit: FAPESP

Eclipsing binary star systems are relatively common in our Universe. To the casual observer, these systems look like a single star, but are actually composed of two stars orbiting closely together. The study of these systems offers astronomers an opportunity to directly measure the fundamental properties (i.e. the masses and radii) of these systems respective stellar components.

Recently, a team of Brazilian astronomers observed a rare sight in the Milky Way – an eclipsing binary composed of  a white dwarf and a low-mass brown dwarf. Even more unusual was the fact that the white dwarf’s life cycle appeared to have been prematurely cut short by its brown dwarf companion, which caused its early death by slowly siphoning off material and “starving” it to death.

The study which detailed their findings, titled “HS 2231+2441: an HW Vir system composed by a low-mass white dwarf and a brown dwarf“, was recently published the Monthly Notices of the Royal Astronomical Society. The team was led by Leonardo Andrade de Almeida, a postdoctoral fellow from the University of São Paolo’s Institute of Astronomy, Geophysics, and Atmospheric Sciences (IAG-USP), along with members from the National Institute for Space Research (MCTIC), and the State University of Feira de Santana.

The Observatorio del Roque de los Muchachos, located on the island of La Palma. Credit: IAC

For the sake of their study, the team conducted observations of a binary star system between 2005 and 2013 using the Pico dos Dias Observatory in Brazil. This data was then combined with information from the William Herschel Telescope, which is located in the Observatorio del Roque de los Muchachos on the island of La Palma. This system, known as of HS 2231+2441, consists of a white dwarf star and a brown dwarf companion.

White dwarfs, which are the final stage of intermediate or low-mass stars, are essentially what is left after a star has exhausted its hydrogen and helium fuel and blown off its outer layers. A brown dwarf, on the other hand, is a substellar object that has a mass which places it between that of a star and a planet. Finding a binary system consisting of both objects together in the same system is something astronomers don’t see everyday.

As Leonardo Andrade de Almeida explained in a FAPESP press release, “This type of low-mass binary is relatively rare. Only a few dozen have been observed to date.”

This particular binary pair consists of a white dwarf that is between twenty to thirty percent the Sun’s mass – 28,500 K (28,227 °C; 50,840 °F) – while the brown dwarf is roughly 34-36 times that of Jupiter. This makes HS 2231+2441 the least massive eclipsing binary system studied to date.

This artist’s impression shows an eclipsing binary star system. Credit: ESO/L. Calçada.

In the past, the primary (the white dwarf) was a normal star that evolved faster than its companion since it was more massive. Once it exhausted its hydrogen fuel, its formed a helium-burning core. At this point, the star was on its way to becoming a red giant, which is what happens when Sun-like stars exit their main sequence phase. This would have been characterized by a massive expansion, with its diameter exceeding 150 million km (93.2 million mi).

At this point, Almeida and his colleagues concluded that it began interacting gravitationally with its secondary (the brown dwarf). Meanwhile, the brown dwarf began to be attracted and engulfed by the primary’s atmosphere (i.e. its envelop), which caused it it lose orbital angular momentum. Eventually, the powerful force of attraction exceeded the gravitational force keeping the envelop anchored to its star.

Once this happened, the primary star’s outer layers began to be stripped away, exposing its helium core and sending massive amounts of matter to the brown dwarf. Because of this loss of mass, the remnant effectively died, becoming a white dwarf. The brown dwarf then began orbiting its white dwarf primary with a short orbital period of just three hours. As Almeida explained:

“This transfer of mass from the more massive star, the primary object, to its companion, which is the secondary object, was extremely violent and unstable, and it lasted a short time… The secondary object, which is now a brown dwarf, must also have acquired some matter when it shared its envelope with the primary object, but not enough to become a new star.”

Artist’s impression of a brown dwarf orbiting a white dwarf star. Credit: ESO

This situation is similar to what astronomers noticed this past summer while studying the binary star system known as WD 1202-024. Here too, a brown dwarf companion was discovered orbiting a white dwarf primary. What’s more, the team responsible for the discovery indicated that the brown dwarf was likely pulled closer to the white dwarf once it entered its Red Giant Branch (RGB) phase.

At this point, the brown dwarf stripped the primary of its atmosphere, exposing the white dwarf remnant core. Similarly, the interaction of the primary with a brown dwarf companion caused premature stellar death. The fact that two such discoveries have happened within a short period of time is quite fortuitous. Considering the age of the Universe (which is roughly 13.8 billion years old), dead objects can only be formed in binary systems.

In the Milky Way alone, about 50% of low-mass stars exist as part of a binary system while high mass stars exist almost exclusively in binary pairs. In these cases, roughly three-quarters will interact in some way with a companion – exchanging mass, accelerating their rotations, and eventually en merging.

As Almeida indicated, the study of this binary system and those like it could seriously help astronomers understand how hot, compact objects like white dwarfs are formed. “Binary systems offer a direct way of measuring the main parameter of a star, which is its mass,” he said. “That’s why binary systems are crucial to our understanding of the life cycle of stars.”

It has only been in recent years that low-mass white dwarf stars were discovered. Finding binary systems where they coexist with brown dwarfs – essentially, failed stars – is another rarity. But with every new discovery, the opportunities to study the range of possibilities in our Universe increases.

Further Reading: São Paulo Research Foundation, MNRAS

This is Kind of Sad. Astronomers Find a Failed Star Orbiting a Dead Star

Artist's impression of a brown dwarf orbiting a white dwarf star. Credit: ESO

Death is simply a part of life, and this is no less the case where stars and other astronomical objects are concerned. Sure, the timelines are much, much greater where these are concerned, but the basic rule is the same. Much like all living organism, stars eventually reach old age and become white dwarfs. And some are not even fortunate enough to be born, instead becoming a class of failed stars known as brown dwarfs.

Despite being familiar with these objects, astronomers were certainly not expecting to find examples of both in a single star system! And yet, according to a new study, that is precisely what an international team of astronomers discovered when looked at WD 1202-024. Using data from the Kepler space telescope, they spotted a binary system consisting of a failed star (a brown dwarf) and the remnant of a star (a white dwarf).

Continue reading “This is Kind of Sad. Astronomers Find a Failed Star Orbiting a Dead Star”

Astronomers Measure the Mass of a White Dwarf, and Prove Einstein was Right… Again

Hubble image showing the white dwarf star Stein 2051B and the smaller star below it appear to be close neighbors. Credit: NASA/ESA/K. Sahu (STScI)

It’s been over a century since Einstein firs proposed his Theory of General Relativity, his groundbreaking proposal for how gravity worked on large scales throughout the cosmos. And yet, after all that time, experiments are still being conducted that show that Einstein’s field equations were right on the money. And in some cases, old experiments are finding new uses, helping astronomers to unlock other astronomical mysteries.

Case in point: using the Hubble Space Telescope, NASA astronomers have repeated a century-old test of General Relativity to determine the mass of a white dwarf star. In the past, this test was used to determine how it deflects light from a background star. In this case, it was used to provide new insights into theories about the structure and composition of the burned-out remnants of a star.

White dwarfs are what become of a star after it has exited the Main Sequence of its lifespan after exhausting their nuclear fuel. This is followed by the star expelling most of its outer material, usually through a massive explosion (aka. a supernova). What is left behind is a small and extreme dense (second only to a neutron star) which exerts an incredible gravitational force.

Illustration revealing how the gravity of a white dwarf star warps space and bends the light of a distant star behind it. Credits: NASA, ESA, and A. Feild (STScI)

This attribute is what makes white dwarfs a good means for testing General Relativity. By measuring how much they deflect the light from a background star, astronomers are able to see the effect gravity has on the curvature of spacetime. This is precisely similar to what British astronomer Sir Arthur Eddington did in 1919, when he led an expedition to determine how much the Sun’s gravity deflected the light of a background star during a solar eclipse.

Known as gravitational microlensing, this same experiment was repeated by the NASA team. Using the Hubble Space Telescope, they observed Stein 2051B – a white dwarf located just 17 light-years from Earth – on seven different occasions during a two-year period. During this period, it passed in front of a background star located about 5000 light-years distant, which produced a visible deviation in the path of the star’s light.

The resulting deviation was incredibly small – only 2 milliarseconds from its actual position – and was only discernible thanks to the optical resolution of Hubble’s Wide Field Camera 3 (WFC3). Such a deviation would have been impossible to detect using instruments that predate Hubble. And more importantly, the results were consistent with what Einstein predicted a century ago.

As Kailash Sahu, an astronomer at the Space Telescope Science Institute (STScI) and the lead researcher on the project, explained in a NASA press release, this method is also an effective way to test a star’s mass. “This microlensing method is a very independent and direct way to determine the mass of a star,” he said. “It’s like placing the star on a scale: the deflection is analogous to the movement of the needle on the scale.”

Animation showing the white dwarf star Stein 2051B as it passes in front of a distant background star. Credit: NASA

The deflection measurement yielded highly-accurate results concerning the mass of the white dwarf star – roughly 68 percent of the Sun’s mass (aka. 0.68 Solar masses) – which was also consistent with theoretical predictions. This is highly significant, in that it opens the door to a new and interesting method for determining the mass of distant stars that do not have companions.

In the past, astronomers have typically determined the mass of stars by observing binary pairs and calculating their orbital motions. Much in the same way that radial velocity measurements are used by astronomers to determine if a planet has a system of exoplanets, measuring the influence two stars have on each other is used to determine how much mass each possesses.

This was how astronomers determined the mass of the Sirius star system, which is located about 8.6 light years from Earth. This binary star system consists of a white supergiant (Sirius A) and a white dwarf companion (Sirius B) which orbit each other with a radial velocity of 5.5 km/s. These measurements helped astronomers determine that Sirius A has a mass of about 2.02 Solar masses while Sirius B weighs in at 0.978 Solar masses.

And while Stein 2051B has a companion (a bright red dwarf), astronomers cannot accurately measure its mass because the stars are too far apart – at least 8 billion km (5 billion mi). Hence, this method could be used in the future wherever companion stars are unavailable or too distant. The Hubble observations also helped the team to independently verify the theory that a white dwarf’s radius can be determined by its mass.

Artist’s impression of the binary pair made up by a white dwarf star in orbit around Sirius (a white supergiant). Credit: NASA, ESA and G. Bacon (STScI)

This theory was first proposed by Subrahmanyan Chandrasekhar in 1935, the Indian-American astronomer whose theoretical work on the evolution of stars (and black holes) earned him the Nobel Prize for Physics in 1983. They could also help astronomers to learn more about the internal composition of white dwarfs. But even with an instrument as sophisticated as the WFC3, obtaining these measurements was not without its share of difficulties.

As Jay Anderson, an astronomer with the STScI who led the analysis to precisely measure the positions of stars in the Hubble images, explained:

“Stein 2051B appears 400 times brighter than the distant background star. So measuring the extremely small deflection is like trying to see a firefly move next to a light bulb. The movement of the insect is very small, and the glow of the light bulb makes it difficult to see the insect moving.”

Dr. Sahu presented his team’s findings yesterday (June 7th) at the American Astronomical Society meeting in Austin, Texas. The team’s result will also appear in the journal Science on June 9th. And in the future, the researchers plan to use Hubble to conduct a similar microlensing study on Proxima Centauri, our solar system’s closest stellar neighbor and home to the closest exoplanet to Earth (Proxima b).

It is important to note that this is by no means the only modern experiment that has validated Einstein’s theories. In recent years, General Relativity has been confirmed through observations of rapidly spinning pulsars, 3D simulations of cosmic evolution, and (most importantly) the discovery of gravitational waves. Even in death, Einstein is still making valued contributions to astrophysics!

Further Reading: NASA